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Big Data Inter-
disciplinary

HPC Cloud

• Impacts preservation, access/use, 
programming model

• Data Analysis/Machine Learning 

• Batch and Stream Processing

• In all fields of science and daily life

• Health, social, financial, policy, 
national security, environment

• Better understanding the world 
surrounding us

• Parallel computing is important

• Performance from Multicore 
(Manycore or GPU)

• Commercially supported data center 
model

• IaaS, PaaS, SaaS
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What is Big Data ?

Volume Velocity  Variety  Veracity  

Data at Scale
Terabytes to 

Petabytes of Data

Data in Motion
• Streaming data
• Real-time or near 

real-time to respond

Data in Many 
Forms

• Structured and 
unstructured data

• Text, numbers, and 
pixels

Data Uncertainty
Inconsistent,  
incomplete, 

ambiguous, and 
approximated data

Big Data is defined by IBM as “any data that cannot be captured, managed and/or processed 
using traditional data management components and techniques.”
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Challenges and Opportunities

• Large-scale parallel simulations and data analysis drive scientific 
discovery across many disciplines

• Research a holistic approach that will enable performance portability 
to any machine, while increasing developer productivity and 
accelerating the advance of science  

• Organize my research as Data-Enabled Discovery Environments for 
Science and Engineering (DEDESE) 

― DOE Workshop Report: Machine Learning and Understanding for Intelligent Extreme 
Scale Scientific Computing and Discovery, January 7-9, 2015

― NSF Career: Map-Collective model for DEDESE and HPC-Cloud 
Integration
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Application
• Analytics

Algorithm

• Machine Learning

Data
• Big Data

System
• Hadoop with Harp

Computation Model

• Synchronization & 
Consistency

The System Solution to Big Data Problems
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http://salsahpc.indiana.edu/twister4azure/
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Motivation of Iterative MapReduce

Input

Output

map

Map-Only

Input

map

reduce

MapReduce

Input

map

reduce

iterations

Iterative 
MapReduce

Pij

MPI and Point-to-
Point

Sequential

Input

Output

map

MapReduce
Classic Parallel Runtimes 

(MPI)

Data Centered, QoS Efficient and 
Proven techniques

Expand the Applicability of MapReduce to more classes of Applications
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MapReduce Programming Model & Architecture

• Map(), Reduce(), and the intermediate key partitioning strategy determine the algorithm

• Input and Output => Distributed file system

• Intermediate data => Disk -> Network -> Disk

• Scheduling =>Dynamic

• Fault tolerance (Assumption: Master failures are rare)

Input Data (Partitions)

Intermediate <Key, Value> space 
partitioned using a key partition 
function

Map (Key , Value)

reduce(Key , List<Value>)

Sort

Output

Worker NodesMaster Node

Distributed
File System

Local disks

Inform 
Master

Schedule 
Reducers

Distributed
File System

Download data

Record readers
Read records from 
data partitions

Sort input <key,value> 
pairs to groups

Google MapReduce , Apache 
Hadoop
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Reduce (Key, List<Value>) 

Map(Key, Value)  

Loop Invariant Data
Loaded only once

Faster intermediate data 
transfer mechanism

Combiner operation to 
collect all reduce outputs

Cacheable map/reduce 
tasks 

(in memory)

Configure()

Combine(Map<Key,Value>)

Programming Model for Iterative MapReduce

• Distinction on loop invariant (e.g. input) data and variable (e.g. intermediate) data
• Cacheable map/reduce tasks (in-memory)
• Combine operation

Main Program

while(..)

{

runMapReduce(..)

}

Intermediate  data

Iterative MapReduce is a programming model that applies a computation (e.g. 
Map task) or function repeatedly, using output from one iteration as the input 
of the next iteration. By using this pattern, it can solve complex computation 
problems by using apparently simple (user defined) functions. 

Twister was our 
initial 
implementation 
with first paper 
having 585 Google 
Scholar citations
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MapReduce Optimized for Iterative Computations

Twister: the speedy elephant

In-Memory

• Cacheable 

map/reduce tasks

Data Flow 

• Iterative

• Loop Invariant 

• Variable data

Thread

• Lightweight

• Local aggregation

Map-Collective

• Communication 

patterns optimized for 

large intermediate data 

transfer

Portability

• HPC (Java)

• Azure Cloud (C#)

• Supercomputer 

(C++, Java)

Abstractions

• Microsoft has developed Daytona, an Iterative MapReduce runtime, which is based on Twister

• Twister4Azure is our prototype that demonstrates portability of Iterative MapReduce from HPC to PaaS/Azure Cloud Azure Queues 
for scheduling, Tables to store metadata and monitoring data, Blobs for input/output/intermediate data storage. 
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Iterative Computations

K-means
Matrix 

Multiplication

Performance of K-Means Parallel Overhead  Matrix Multiplication
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Master Node

Twister 
Driver

Twister-MDS

ActiveMQ
Broker

MDS Monitor

PlotViz

I. Send message to start 
the job

II. Send intermediate 
results

Client Node

Demo of Multi-Dimensional Scaling using 
Iterative MapReduce

• Input: 30K metagenomics data

• MDS reads pairwise distance matrix of all sequences

• Output: 3D coordinates visualized in PlotViz



SALSA

Iterative MapReduce - MDS Demo
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Education and Training using Cloud

• McKinsey says that there will be up to 190,000 nerds and 1.5 million extra managers
needed in Data Science by 2018 in USA

• Many more jobs than simulation (third paradigm) where Computational Science not 
very successful as curriculum

• Need curricula to educate people to use (or design) Clouds running Data Analytics 
processing Big Data to solve problems (e.g. health, social, financial, policy, national 
security, scientific experiment, environment)
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An open online training framework

• No single group or strategy that will be able to cover the full spectrum of 
educational needs required to comprehensively train biomedical big data 
researchers

• Building  a community repository, and creating lecture content and example 
courses with hands-on virtual machines for biomedical big data training

Biomedical Big Data Training Collaborative
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The playlist  feature is demonstrated in our CloudMOOC course, which teaches cloud computing and 
includes topics like Hadoop, OpenStack and NoSQL databases. This figure shows that a student can 
simply drag and drop course modules (left) to make a playlist of lessons (right).

Customization using Playlist for Cloud Computing MOOC 
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Curriculum Development

• Data-enabled Science covers Data curation and management, Analytics (Algorithms), Runtime (e.g. 
MapReduce, Workflow, NoSQL), Visualization for Applications

• Some courses aimed at one aspect of this; our courses cover integration and link to applications

• Look at Massive Open Online Courses (MOOCs) to support online modules that can be used by other 
universities; initially at ECSU and other HBCU

• 3 funded collaborative curriculum developments using MOOCs

– Data Science - CloudMOOC (Google Course Builder)

– Biomedical training community repository  - NIH/MOOC (NIH)

– HBCU-STEM curriculum development - HBCU (NSF) starts Fall 2015
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Remote Sensing Curriculum Enhancement using 
Cloud Computing

ECSU-IU collaboration in environmental 
applications of Microwave Remote 
Sensing using Cloud Computing 
technology.

Demonstrate the concept that Data and 
Computational Science (remote sensing) 
curriculum can drive new workforce and 
research opportunities at Minority Serving 
Institutions (MSI) by exploiting 
enhancements using Cloud Computing 
technology. 

We will explore multiple targeted courses 
built from this repository of shared 
customizable lessons.
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Large Scale Data Analysis Applications

Case Studies

• Bioinformatics: Multi-Dimensional Scaling (MDS) on gene sequence data

• Computer Vision: Kmeans Clustering on image data (high dimensional model data)

• Text Mining: LDA on wikipedia data (dynamic model data due to sampling)

• Complex Network: Online Kmeans (streaming data)

• Deep Learning: Convolutional Neural Networks on image data

Computer Vision Complex NetworksBioinformatics Deep LearningText Mining
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Case Study 1: 
High Dimensional Image Data Clustering

Map Collective Computing Paradigm

4.      Interdisciplinary Applications and Technologies
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Data Intensive Batch Kmeans Clustering

Image Classification: 7 million images; 512 features per image; 1 million clusters
10K Map tasks;  64G broadcasting data  (1GB data transfer per Map task node);
20 TB intermediate data in shuffling.

Collaborative work with Prof. David Crandall
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High Dimensional Image Data

• K-means Clustering algorithm is used to cluster the images with similar features.

• In image clustering application, each image is characterized as a data point (vector)  with 
dimension in range 512 - 2048. Each value (feature) ranges from 0 to 255. 

• Around 180 million vectors in full problem

• Currently, we are able to run K-means Clustering up to 1 million clusters and 7 million data 
points on 125 computer nodes. 

– 10K Map tasks;  64G broadcast data  (1GB data transfer per Map task node);

– 20 TB intermediate data in shuffling.
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Twister Collective Communications

• Broadcasting 

– Data could be large

– Chain & MST

– Gather scatter

– Local global sync

– Rotation

• Map Collectives 

– Local merge

• Reduce Collectives 

– Collect but no merge

• Combine

– Direct download or Gather

Map Tasks Map Tasks

Map Collective

Reduce Tasks

Reduce Collective

Gather

Map Collective

Reduce Tasks

Reduce Collective

Map Tasks

Map Collective

Reduce Tasks

Reduce Collective

Broadcast
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• At least a factor of 120 on 125 nodes, compared with the simple broadcast algorithm

• The new topology-aware chain broadcasting algorithm gives 20% better performance than best C/C++ MPI methods (four 
times faster than Java MPJ) 

• A factor of 5 improvement over non-optimized (for topology) pipeline-based method over 150 nodes

Tested on IU Polar Grid with 1 Gbps Ethernet connection

High Performance Data Movement
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K-means Clustering Parallel Efficiency

Shantenu Jha et al. A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures. 2014.
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Map Collective Computing Paradigm

Harp 
Spark

Parameter Server

4.      Interdisciplinary Applications and Technologies
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Why Collective Communications for Big Data Processing?

• Collective Communication and Data Abstractions

– Our approach to optimize data movement

– Hierarchical data abstractions and operations defined on 
top of them

• Map-Collective Programming Model

– Extended from MapReduce model to support collective 
communications

– Two Level of BSP parallelism

• Harp Implementation

– A plug-in to Hadoop

– Component layers and the job flow
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Parallelism Model Architecture

Shuffle
M M M M

Collective Communication

M M M M

R R

MapCollective ModelMapReduce Model

YARN

MapReduce V2

Harp

MapReduce
Applications

MapCollective
ApplicationsApplication

Framework

Resource 
Manager

The Concept of Harp Plug-in
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Vertex 
Table

Key-Value 
Partition

Array

Transferable

Key-
Values

Vertices, Edges, 
Messages

Double 
Array

Int
Array

Long 
Array

Array Partition
<Array Type>

Object

Vertex 
Partition

Edge 
Partition

Array Table 
<Array Type>

Message 
Partition

Key-Value 
Table

Byte 
Array

Message 
Table

Edge
Table

Broadcast, Send

Broadcast, AllGather, AllReduce, 
Regroup-(Combine/Reduce), Message-to-Vertex…

Broadcast, Send

Table

Partition

Basic Types

Hierarchical Data Abstraction
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YARN

MapReduce V2

Harp

MapReduce Applications MapCollective Applications

Harp Component Layers

MapReduce

Collective Communication Abstractions

Map-Collective Programming Model

Applications: K-Means, WDA-SMACOF, Graph-Drawing…

Collective Communication 
Operators

Hierarchical Data Types 
(Tables & Partitions)

Memory Resource 
Pool

Collective 
Communication APIs

Array, Key-Value, Graph 
Data Abstraction

MapCollective
Interface

Task Management
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Daemon

Spark Parameter Server

Daemon

Daemon

• Implicit Data Distribution
• Implicit Communication • Explicit Data Distribution

• Explicit Communication
• Explicit Data Distribution
• Implicit Communication

Various Collective 
Communication 

Operations

Worker

Harp

Driver

Worker

Worker Worker Worker 
Group

Server Group

Worker 
Group

Comparison of Iterative Computation Tools

Asynchronous 
Communication 

Operations

M. Zaharia et al. “Spark: Cluster Computing with 
Working Sets”. HotCloud, 2010.

B. Zhang, Y. Ruan, J. Qiu. “Harp: Collective 
Communication on Hadoop”. IC2E, 2015.

M. Li, D. Anderson et al. “Scaling Distributed 
Machine Learning with the Parameter Server”. OSDI, 
2014.
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TaskTask

Driver

Task

Input (Training) Data

Load Load Load1 1 1

5 Iteration

Compute3

Current 
Model

Broadcast2

Reduce4

Current Model

Compute3

Current Model

Compute3

New Model New Model New Model
New 

Model

Current Model

Spark
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Task

Input (Training) Data

Load Load Load1 1 1

4 Iteration

Current Model

Compute2

New Model

3

Task

Current Model

Compute2

New Model

3

Task

Current Model

Compute2

New Model

3

Collective Communication (e.g. Allreduce)

Harp
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TaskTaskTask

Training Data

Load Load Load1 1 1

5 Iteration

Local Model

Compute3

Server

Global Model

2 Download4 Upload 2 Download4 Upload 2 Download4 Upload

Local Model

Compute3

Local Model

Compute3

Parameter Server
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Case Study 2: 
Parallel Latent Dirichlet Allocation for Text Mining

Map Collective Computing Paradigm

4.      Interdisciplinary Applications and Technologies
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LDA: mining topics in text collection

• Huge volume of Text Data

– information overloading

– what on earth is inside the 
TEXT Data?

• Search

– find the documents relevant 
to my need (ad hoc query)

• Filtering

– fixed info needs and dynamic 
text data

• What's new inside?

– discover something I don't 
know

Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).
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• Topic Models is a modeling 
technique, modeling the data by 
probabilistic generative process.

• Latent Dirichlet Allocation (LDA) is 
one widely used topic model.

• Inference algorithm for LDA is an 
iterative algorithm using share 
global model data.

LDA and Topic Models

• Document

• Word

• Topic: semantic unit inside the data

• Topic Model

– documents are mixtures of topics, 
where a topic is a probability 
distribution over words

Normalized co-
occurrence matrix

Mixture components Mixture weights

1 million 
words

3.7 million docs

10k topics

Global Model Data
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Gibbs Sampling in LDA

∑
___k‘ ~ ∞
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Training Datasets used in LDA Experiments

Dataset enwiki clueweb bi-gram gutenberg

Num. of Docs 3.8M 50.5M 3.9M 26.2K

Num. of Tokens 1.1B 12.4B 1.7B 836.8M

Vocabulary 1M 1M 20M 1M

Doc Len. Avg/STD 293/523 224/352 434/776 31879/42147

Highest Word Freq. 1714722 3989024 459631 1815049

Lowest Word Freq. 7 285 6 2

Num. of Topics 10K 10K 500 10K

Init. Model Size 2.0GB 14.7GB 5.9GB 1.7GB

Note: Both “enwiki” and “bi-gram” are English articles from Wikipedia [31]. “clueweb is a 10%
dataset from ClueWeb09, which is a collection of English web pages [32]. “gutenberg” is comprised
of English books from Project Gutenberg [33].

The total number of model parameters is kept as 10 billion
on all the datasets.
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Data Parallelism & Model Parallelism

Data Parallelism 
While the training data are split 
among parallel workers, the 
global model is distributed on a 
set of servers or existing workers. 
Each worker computes on a local 
model and updates it with the 
synchronization between local 
models and the global model.

Model Parallelism
In addition to splitting the 
training data over parallel 
workers, the global model 
data is split between 
workers and rotated 
between workers

Bingjing Zhang, Bo Peng and Judy Qiu, High Performance LDA through Collective Model Communication Optimization, 
Proceedings of International Conference on Computational Science (ICCS), June 6-8, 2016.
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• High memory consumption for model 
and input data

• High number of iterations (~1000)

• Computation intensive

• Traditional “allreduce” operation in 

MPI-LDA is not scalable.

Harp-LDA Execution Flow

Challenges

• Harp-LDA uses AD-LDA (Approximate 
Distributed LDA) algorithm (based on 
Gibbs sampling algorithm) 

• Harp-LDA runs LDA in iterations of local 
computation and collective 
communication to generate new global 
model.



SALSA

Harp-LDA Performance Tests on Intel Haswell Cluster

“enwiki” dataset. 3.8 million Wikipedia 
documents, Vocabulary: 1 million words; 
Topics: 10k topics; alpha: 0.01; beta: 0.01; 
iteration: 200

“bi-gram” dataset. 3.9 Wikipedia documents, 
Vocabulary: 20 million words; Topics: 500 topics; 
alpha: 0.01; beta: 0.01; iteration: 200

Data Parallelism 
Performance Comparison

Model Parallelism
Performance Comparison
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Harp-LDA Model Parallelism on “bi-gram”

(a) Elapsed Execution Time vs. Model Likelihood (b) Elapsed Execution Time vs. Iteration Execution Time 
(c) First 10 Iteration Execution Times (d) Final 10 Iteration Execution Times 
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Harp LDA on Big Red II Supercomputer (Cray)
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Harp LDA on Juliet (Intel Haswell)

Machine settings 

• Big Red II: tested on 25, 50, 75, 100 and 125 nodes, 
each node uses 32 parallel threads; Gemini 
interconnect 

• Juliet: tested on 10, 15, 20, 25, 30 nodes, each node 
uses 64 parallel threads on 36 core Intel Haswell node 
(each with 2 chips); infiniband interconnect

Harp LDA Scaling Tests

Corpus: 3,775,554 Wikipedia documents, 
Vocabulary: 1 million words; Topics: 10k topics; 
alpha: 0.01; beta: 0.01; iteration: 200
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Case Study 3: 
Parallel Tweet Online Clustering  

Map Streaming Computing Paradigm

4.      Interdisciplinary Applications and Technologies
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• IUNI analysis pipeline for meme clustering and classification : Detecting Early Signatures of 
Persuasion in Information Cascades

• Implement with HBase + Hadoop (Batch) and HBase + Storm(Streaming) + ActiveMQ

• 2 million streaming tweets processed in 40 minutes; 35,000 clusters

• Storm Bolts coordinated by ActiveMQ to synchronize parallel cluster center updates – add 
loops/iterations to Apache Storm

Parallel Tweet Online Clustering with Apache Storm

Xiaoming Gao, Emilio Ferrara, Judy Qiu, Parallel Clustering of High-Dimensional Social Media Data Streams Proceedings of CCGrid, May 4-7, 2015
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Batch Analysis on Historical Data
(Hadoop/Harp)

Pub/Sub
Messaging Klatsch Classifiers Detection Sentiment 

Analysis
Data Stream 
Source

Interactive 
Query

Storage 
Substrate

(IndexedHBase)

Map

Timeline

Statistics

Diffusion Network

Historical Data

Movie 
Generation

Real Time Analysis on Data Streams
(Storm)

Social Media Observatory 

• Starting from late 2010, we have collected an ongoing, near uninterrupted sample of 10% public Twitter streaming record (approximate 100 
billion tweets to date). The existing collection has 180 TB of historical data and loading rate of 40 million tweets per day.

• IndexedHBase can automatically retrieve data from the 10% Twitter stream (“gardenhose”), split obtained Tweets into partitions, and parse 
and index such data on a daily base. With multiple parallel partition loaders, one day’s worth of data can be loaded within a few hours. 

• We have shown in our recent work to be able to process the Twitter 10% data stream in real-time with 96-way parallelism. 

Data Collection, Storage, Analytics and Visualization Architecture
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Sequential Algorithm for Clustering Tweet Stream

• Online (streaming) K-Means clustering algorithm with 

and 

• Group tweets in a time window as protomemes: 

– Label protomemes (points in space to be clustered) by “markers”, which 
are , , , and 

– A phrase is defined as the textual content of a tweet that remains after 
removing the hashtags, mentions, URLs, and after stopping and 
stemming

– Number of tweets in a e : Min: 1, Max :206, Average 1.33

• Note a given tweet can be in more than one protomeme

– One tweet on average appears in 2.37 protomemes

– And number of protomemes is 1.8 times number of tweets
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(1) Slide time window by one time step

(2) Delete old protomemes out of time window from their clusters

(3) Generate protomemes for tweets in this step

(4) For each new protomeme classify in old or new cluster (outlier)

Online K-Means clustering

#p2
#p2

If marker in 
common with a 
cluster member, 
assign to that 
cluster

If near a cluster, 
assign to 
nearest cluster

Otherwise it is 
an outlier and a 
candidate new 
cluster
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Parallelization with Storm – Challenges

DAG organization of parallel workers: hard to synchronize cluster information

Protomeme
Generator 

Spout

Synchronization 
Coordinator 

Bolt

ActiveMQ
Broker

…

Worker Process

Clustering Bolt

Clustering Bolt

…

Worker Process

Clustering Bolt

Clustering Bolt

…

tweet 
stream

- Spout initiation by broadcasting INIT message
- Clustering bolt initiation by local counting
- Sync coordinator initiation by global counting 

(of #protomemes)

Synchronization initiation methods:

Suffer from variation of processing speed

Parallelize Similarity Calculation

Calculate Cluster Centers
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• Speedup on up to 96 bolts on two clusters, Moe and Madrid

• Red curve is old online Kmeans algorithm; green and blue new algorithm

• Full Twitter – 1000 way parallelism (expected)

Parallel Tweet Clustering with Storm
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Six Computation Paradigms for Data Analytics

(1) Map Only (4) Point to Point or 

Map-Communication

(3) Iterative Map Reduce or 

Map-Collective

(2) Classic 

Map-Reduce

Input

map

reduce

Input

map

reduce

Iterations
Input

Output

map

Local

Graph

(5) Map-Streaming

maps brokers

Events

(6) Shared memory 

Map-Communication

Map  & Communication

Shared Memory

Pleasingly Parallel

₋ BLAST Analysis
₋ Local Machine 

Learning
₋ Pleasingly Parallel

₋ High Energy Physics 
(HEP) Histograms,

₋ Web search
₋ Recommender Engines

₋ Expectation Maximization
₋ Clustering 
₋ Linear Algebra
₋ PageRank

₋ Classic MPI
₋ PDE Solvers and 

Particle Dynamics
₋ Graph

₋ Streaming images from 
Synchrotron sources, 
Telescopes, 
Internet  of Things

₋ Difficult to parallelize  
₋ asynchronous parallel 

Graph

These 3 Paradigms are my Focus
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Comparison of current Data Analytics stack from Cloud and HPC infrastructure

J. Qiu, S. Jha, A. Luckow, G. Fox, TowardsHPC-ABDS: An Initial High-Performance Big Data Stack, proceedings of ACM 1st Big Data Interoperability Framework Workshop: 
Building Robust Big Data ecosystem, NIST special publication, March 13-21, 2014.

My Focus
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The Models of Contemporary Big Data Tools

MapReduce ModelDAG Model Graph Model BSP/Collective Model

Storm

Twister
For 

Iterations/
Learning

For 
Streaming

For Query

S4

Hadoop

DryadLINQ Pig

Spark

Spark SQL

Spark Streaming

MRQL

Hive

Tez

Giraph

Hama

GraphLab

Harp

GraphX

HaLoop

Samza

Dryad

Stratosphere / Flink

Many of them have 
fixed communication 
patterns!
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Computation Characteristics of Big Data Tools

Tool
Computation 

Model
Data Abstraction Communication Pattern

MPI [1] Loosely
Synchronous

N/A
Arrays and objects sending/receiving or collective 
communication operations

Hadoop [2]
(Iterative)

MapReduce
Key-Values

Shuffle (disk-based) between Map stage and Reduce stage

Twister [3] Regroups (in-memory) between Map stage and Reduce stage, 
“broadcast” and “aggregate”

Spark [4] RDD RDD Transformations on RDD, “broadcast and “aggregate”

Dryad [5]
DAG N/A

Communication is between two connected vertex processes in 
the execution of DAG 

Giraph [6]

Graph/BSP Graph

Graph-based message communication following Pregel model

Hama [7] Graph-based message communication following Pregel model 
or direct message communication between workers

GraphLab (Dato) 
[8, 9, 10]

Graph-based communication through caching and fetching of 
ghost vertices and edges or the communication between 
master vertex and its replicas in PowerGraph (GAS) model

GraphX [11] Graph-based communication supports Pregel model and 
PowerGraph model
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1. Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds 

2.      Clouds are important for Big Data Analysis

3.      Clouds are important for education: CloudMOOC

4.      Interdisciplinary Applications and Technologies

5.      Enhancing Commodity systems  (Apache Big Data Stack) to HPC-ABDS

6.      Summary and Future

Cloud Computing

Outline

http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/plotviz/index.html
http://salsahpc.indiana.edu/plotviz/index.html
http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
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Progress in HPC-ABDS Runtime
• Standalone Twister: Iterative Execution (caching) and High performance communication extended 

to first Map-Collective runtime

• HPC-ABDS Plugin Harp: adds HPC communication performance and rich data abstractions to 
Hadoop 

• Online Clustering with Storm integrates parallel and dataflow computing models

• Development of library of Collectives to use at Reduce phase

– Broadcast and Gather needed by current applications

– Discover other important ones (e.g. Allgather, Global-local sync, rotation)

– Implement efficiently on each platform (e.g. Amazon, Azure, Big Red II, Haswell Clusters)

• Clearer application fault tolerance model based on implicit synchronizations points at iteration end 
points

• Runtime for data parallel languages with initial work on Apache Pig enhanced with Harp

• Integrate GPU support with Map-Collective model including deep learning



SALSA

Summary and Future

• Identification of Apache Big Data Software Stack and integration with High 
Performance Computing Stack to give HPC-ABDS

– ABDS/Many Big Data applications/algorithms need HPC for performance

– HPC needs ABDS for rich software model productivity/sustainability

• Identification of Six Computation Models for HPC and Data Analytics

• Identification and Study of Map-Collective and Map-Streaming Model

• Integrate streaming and batch workflow as in social observatory – look at 
Apache Beam and Google Cloud Dataflow

• Implement National Strategic Computing Initiative HPC-Big Data Convergence 
with HPC-ABDS

• Continue Twister/ Twister4Azure to Harp conversion with more data analytics

– Apache Pig, Hadoop, Storm, and HBase enhancement in the form of plug-in

• Start HPC incubator project in Apache to bring HPC-ABDS to community
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The Harp Library

• Harp is an implementation designed in a pluggable way to bring high performance to 
the Apache Big Data Stack and bridge the differences between Hadoop ecosystem and 
HPC system through a clear communication abstraction, which did not exist before in 
the Hadoop ecosystem.

• Hadoop Plugin that targets Hadoop 2.2.0

• Provides implementation of the collective communication abstractions and 
MapCollective programming model

• Project Link: http://salsaproj.indiana.edu/harp/index.html

• Source Code Link: https://github.com/jessezbj/harp-project

We built Map-Collective as a unified model to improve the performance and expressiveness of Big 
Data tools. We ran Harp on K-means, Graph Layout, and Multidimensional Scaling algorithms with 
realistic application datasets over 4096 cores on the IU BigRed II Supercomputer (Cray/Gemini) where 
we have achieved linear speedup. 

Extra slides

https://github.com/jessezbj/harp-project
https://github.com/jessezbj/harp-project
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Collective Communication Operations

Operation Name Data Abstraction Algorithm Time Complexity

broadcast
arrays, key-value
pairs & vertices

chain 𝒏𝜷

allgather
arrays, key-value
pairs & vertices

bucket 𝒑𝒏𝜷

allreduce
arrays, key-value
pairs

bi-directional
exchange

(𝒍𝒐𝒈𝟐𝒑)𝒏𝜷

regroup-allgather 2𝒏𝜷

regroup
arrays, key-value
pairs & vertices

point-to-point
direct sending

𝒏𝜷

send messages
to vertices

messages,
vertices

point-to-point
direct sending

𝒏𝜷

send edges to
vertices

edges, vertices
point-to-point
direct sending

𝒏𝜷
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K-means Clustering

On each node do

for t < iteration-num; t←t+1 do

for each p in points do

for each c in centroids do

Calculate the distance between p and c;

Add point p to the closest centroid c;   

Allreduce the local point sum;

Compute the new centroids;

M M M M

allreduce centroids
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Test Environment: Big Red II 

http://kb.iu.edu/data/bcqt.html
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Force-directed Graph Drawing Algorithm

On each node do

for t < iteration-num; t←t+1 do

Calculate repulsive forces and displacements;

Calculate attractive forces and displacements;

Move the points with displacements limited by 

temperature;

Allgather the new coordination values of the   

points;

T. Fruchterman, M. Reingold. “Graph Drawing by Force-Directed Placement”, Software Practice & Experience 21 (11), 1991.

M M M M

allgather positions of 
vertices
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iteration on 
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network: 6035 seconds



SALSA

WDA-SMACOF

Y. Ruan et al. “A Robust and Scalable Solution for Interpolative Multidimensional Scaling With Weighting”. E-Science, 2013.

M M M M

allreduce the stress value

allgather and allreduce results in 
the conjugate gradient process
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On each node do

while current-temperature > min-temperature do

while stress-difference > threshold do

Calculate BC matrix;

Use conjugate gradient process to solve the 

new coordination values;

(this is an iterative process which contains 

allgather and allreduce operations) 

Compute and allreduce the new stress value;

Calculate the difference of the stress 

values;

Adjust the current temperature;

Scaling by Majorizing a Complicated Function (SMACOF) MDS algorithm 


