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0 Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

Q Clouds are important for Big Data Analysis

@ Clouds are important for Education and Training

Interdisciplinary Applications and Technologies

@ Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS

Summary and Future
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e Impacts preservation, access/use,
programming model

e Data Analysis/Machine Learning
e Batch and Stream Processing e Better understanding the world
surrounding us

HPC Cloud

e Parallel computing is important e Commercially supported data center

e Performance from Multicore model
(Manycore or GPU) e |aaS, Paas, Saa$S




What is Big Data ?

Big Data is defined by IBM as “any data that cannot be captured, managed and/or processed
using traditional data management components and techniques.”
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Challenges and Opportunities

* Large-scale parallel simulations and data analysis drive scientific
discovery across many disciplines

* Research a holistic approach that will enable performance portability
to any machine, while increasing developer productivity and
accelerating the advance of science

* Organize my research as Data-Enabled Discovery Environments for
Science and Engineering (DEDESE)

— NSF Career: Map-Collective model for DEDESE and HPC-Cloud — DOE Workshop Report: Machine Learning and Understanding for Intelligent Extreme
Integration Scale Scientific Computing and Discovery, January 7-9, 2015 SA/ SA



The System Solution to Big Data Problems

System Application
 Hadoop with Harp * Analytics

Computation Model

Algorithm

* Synchronization &

. * Machine Learning
Consistency
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Motivation of Iterative MapReduce

Classic Parallel Runtimes
MapReduce (MPI)
Data Centered, QoS Efficient and

{;’:}, i:é:? Proven techniques

cl

Expand the Applicability of MapReduce to more classes of Applications

Sequential Map-Only MapReduce Iterative MPI and Point-to-
MapReduce | . : Point N\
Input Input Input Input iterations
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Hadoop

Input Data (Partitions) .
Record readers @

Read records from
data partitions O Map (Key, Value)
™3

Intermediate <Key, Value> space
partitioned using a key partition
function

Sort input <key,value>
pairs to groups [

Sort ]
@ reduce(Key, List<Value>)

O
Iy’

Output

Master Node

/

MapReduce Programming Model & Architecture

Google MapReduce , Apache

Worker Nodes

Distributed
File System

Schedule
Reducers

|
|

% Local disks

Download data

v Distributed
File System

(0|

Map(), Reduce(), and the intermediate key partitioning strategy determine the algorithm

Input and Output => Distributed file system
Intermediate data => Disk -> Network -> Disk
Scheduling =>Dynamic

Fault tolerance (Assumption: Master failures are rare)

SALSA



Programming Model for Iterative MapReduce

Loop Invariant Data
Loaded only once

. Cacheable map/reduce ——3
Intermediate data Configure() . tasks =
Main Program i’ (in memory) =

Twister was our

Map(Key, Value)

while(..) L
{ i’ Faster intermediate data initial
} runMapReduce (. .) — transfer mechanism implementation
with first paper
Combine(Map<Key,Value>) Combiner operation to having 585 Google

collect all reduce outputs Scholar citations

Iterative MapReduce is a programming model that applies a computation (e.g.
Map task) or function repeatedly, using output from one iteration as the input
of the next iteration. By using this pattern, it can solve complex computation
problems by using apparently simple (user defined) functions.

« Distinction on loop invariant (e.g. input) data and variable (e.g. intermediate) data
* Cacheable map/reduce tasks (in-memory)

 Combine operation SALSA



Twister =

Cross Platform Iterative MapReduce =,

Twister: the speedy elephant

Abstractions

/In—Memory /Data Flow N Kl'hread \/I\/Iap-Collective \/Portability )
« Cacheable « Iterative « Lightweight « Communication * HPC (Java)
map/reduce tasks ||  Loop Invariant - Local aggregation | Patterns optimized for | < Azure Cloud (C#)
« Variable data large intermediate data | ¢ Supercomputer
transfer (C++, Java)
\ AN AN AN AN v

. Microsoft has developed Daytona, an Iterative MapReduce runtime, which is based on Twister

. TwisterdAzure is our prototype that demonstrates portability of Iterative MapReduce from HPC to PaaS/Azure Cloud Azure Queues
for scheduling, Tables to store metadata and monitoring data, Blobs for input/output/intermediate data storage.
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Iterative Computations
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Demo of Multi-Dimensional Scaling using
Iterative MapReduce

Il. Send intermediate
results

Master Node

ActiveM
Q MDS Monitor
Broker

Twister-MDS

PlotViz

I. Send message to start
the job
Client Node /

* Input: 30K metagenomics data

* MDS reads pairwise distance matrix of all sequences
e OQutput: 3D coordinates visualized in PlotViz
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Iterative MapReduce - MDS Demo
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Education and Training using Cloud

McKinsey says that there will be up to 190,000 nerds and 1.5 million extra managers
needed in Data Science by 2018 in USA

Many more jobs than simulation (third paradigm) where Computational Science not
very successful as curriculum

Need curricula to educate people to use (or design) Clouds running Data Analytics
processing Big Data to solve problems (e.g. health, social, financial, policy, national
security, scientific experiment, environment)

SALSA



B:g Data for Science

Home Tutorials Contact

Big Data for Science Workshop

July 26-30, 2010, NCSA Summer School
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300+ Students (200 on sites from 10 institutes; 100 online)
IU MapReduce and UF Virtual Applicance technologies are supported by FutureGrid.

Workshop Schedule

(In Central Time)
July 26

e 10:00AM - Keynote: Data Intensive Computing
Alex Szalay
@The Johns Hopkins University

e 11:30AM - Break (lunch for Eastern, Central time)

e 12:30PM - Making the most of the I/O Software Stack
Rob Latham
@Argonne National Lab

e 2:00PM - Break (lunch Mountain, Pacific time)

e 3:00PM - Data movement & Storage (Data Capacitor WAN
Filesystem)
Justin Miller
@Indiana University

e 4:00PM - Scalable and Distributed Visualization using Paraview
Eric Wernert
@Indiana University

e 5:30PM - Local Reception

July 27
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Join FutureGrid at Science Cloud Summer School

Get immersive, hands-on training in the use of cloud computing technologies iterative MapReduce Enabling

in science. Training will concentrate on application and computer science. HPC-Cioud Interoperability

When: July 30-August 3, 2012

Participants: Graduate students, post-docs, and professionals
To register, visit: hub.vscse.org
For more information, see: sciencecloudsummer2012.tumblr.com Scientific
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4 Cloud Computing Announcements Course Lessons Homework Forum

worth having

Cloud Computing

The course covers all aspects of the cloud architecture stack, from
Software as a Service (large-scale biology and graphics applications),
Platform as a Service (MapReduce (Hadoop), Iterative MapReduce

(Twister) and NoSQL (HBase)), to Infrastructure as a Service (low-level
virtualization technologies).

Class Summary

In this course you will learn basic concepts in Cloud Computing. You will
learn how to write your own software using key cloud programming

A judy.qiu09@gmail.com

g

" i

models and tools to support data mining and data analysis applications.

What Should | What Will | Learn? Class Projects

Kn OW? At the end of this course, you will The class has several projects
have learned key concepts in that will allow students to get

General programming experience cloud computing and enough firsthand experience with the

with Windows or Linux using Java programming to be able to solve technologies taught here. Projects

and scripts is required. A data analysis problems on your are performed on VirtualBox

background in parallel and cluster own. Appliances or academic clouds

computing is a plus, although not like FutureGrid.

necessary.

Instructor

Judy Qiu

Judy Qiu is an Assistant Professor
in the School of Informatics and
Computing at Indiana University.
Her research interests focus on
data-intensive computing at the
intersection of cloud and multicore



Biomedical Big Data Training Collaborative

Virtual Machine
Cknusel

 [Section | Package

Metadata |

: Run
{ Slides |

Locally

Videos ) ‘
Assessments J, Tags
Assignments

An open online training framework

* No single group or strategy that will be able to cover the full spectrum of
educational needs required to comprehensively train biomedical big data
researchers

e Building a community repository, and creating lecture content and example
courses with hands-on virtual machines for biomedical big data training SA/SA



Customization using Playlist for Cloud Computing MOOC

Cloud Computing - Custc X
<« C A [O cloudmooc.appspot.com/playlist e @@ =
32 Apps (@) NewTab [ 999999999999999- - 99999999999999g... #* Getthe mostupto... [ Phishing Ahead!

Lessons == Select lessons

1.1 Course Info
1. Cloud Computing Fundamentals «
1.2 Introduction
(&) 1.1.Course Info
1.3 Data Center Model

X X X X

(&) 1.2 Introduction
2= 2_2 Student Work 1

(&) 1.3. Data Center Model

Q 1.4_ Data Intensive Sciences

)

5. laaS. PaaS and SaaS

Q€

6. Challenges

2. How to Run VMs (laas) -~
() 2.1. Course Expectations

&) 2.2. Student Work 1

() 2.3. Student Work 2

The playlist feature is demonstrated in our CloudMOOC course, which teaches cloud computing and
includes topics like Hadoop, OpenStack and NoSQL databases. This figure shows that a student can
simply drag and drop course modules (left) to make a playlist of lessons (right). SA/SA



Curriculum Development

 Data-enabled Science covers Data curation and management, Analytics (Algorithms), Runtime (e.g.
MapReduce, Workflow, NoSQL), Visualization for Applications

 Some courses aimed at one aspect of this; our courses cover integration and link to applications

 Look at Massive Open Online Courses (MOOCs) to support online modules that can be used by other
universities; initially at ECSU and other HBCU

* 3 funded collaborative curriculum developments using MOOCs
— Data Science - CloudMOOC (Google Course Builder)
— Biomedical training community repository - NIH/MOOC (NIH)
— HBCU-STEM curriculum development - HBCU (NSF) starts Fall 2015

SALSA
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Remote Sensing Curriculum Enhancement using

Cawten of E:

Cloud Computing

Eozasurw Crry Srare Unvensiry

cu.ucl ix Remare Suuuo Eovcarion axd Restancu

Qﬁbm-w-‘»" T e et

ECSU-IU collaboration in environmental
applications of Microwave Remote
Sensing using Cloud Computing
technology.

Demonstrate the concept that Data and
Computational Science (remote sensing)
curriculum can drive new workforce and
research opportunities at Minority Serving
Institutions (MSI) by exploiting
enhancements using Cloud Computing
technology.

We will explore multiple targeted courses

built from this repository of shared
customizable lessons.

SALSA
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Large Scale Data Analysis Applications

Case Studies
e Bioinformatics: Multi-Dimensional Scaling (MDS) on gene sequence data
 Computer Vision: Kmeans Clustering on image data (high dimensional model data)
* Text Mining: LDA on wikipedia data (dynamic model data due to sampling)
 Complex Network: Online Kmeans (streaming data)
* Deep Learning: Convolutional Neural Networks on image data

— @ y=0o(lh+h)

lﬁ oo N PN
- 0, 0‘0‘0’0 0!0

Bioinformatics Computer Vision Complex Networks Text Mining Deep Learnin%A -



4.9 Interdisciplinary Applications and Technologies

Case Study 1:
High Dimensional Image Data Clustering

SALSA



Data Intensive Batch Kmeans Clustering

Image Classification: 7 million images; 512 features per image; 1 million clusters
10K Map tasks; 64G broadcasting data (1GB data transfer per Map task node);
20 TB intermediate data in shuffling.

Collaborative work with Prof. David Crandall

SALSA



High Dimensional Image Data

K-means Clustering algorithm is used to cluster the images with similar features.

In image clustering application, each image is characterized as a data point (vector) with
dimension in range 512 - 2048. Each value (feature) ranges from 0 to 255.

Around 180 million vectors in full problem

Currently, we are able to run K-means Clustering up to 1 million clusters and 7 million data
points on 125 computer nodes.

— 10K Map tasks; 64G broadcast data (1GB data transfer per Map task node);
— 20 TB intermediate data in shuffling.

SALSA



Twister Collective Communications

Broadcast

Broadcasting /
— Data could be large Map Tasks YEFRENS

— Chain & MST
— Gather scatter
— Local global sync

— Rotation Map Collective Map Collective Map Collective

~

Map Collectives
— Local merge Reduce Tasks Reduce Tasks Reduce Tasks

Reduce Collectives
— Collect but no merge

Combine \

— Direct download or Gather

Reduce Collective Reduce Collective Reduce Collective

>

Gather

SALSA



High Performance Data Movement
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Figure 5. Twister Chain vs. Figure 6. Twister vs. MPI Figure 7. Twister vs. MPJ Figure 8. Twister vs. Spark Figure 9. Twister Chain

Simple Broadcasting (Broadcasting 0.5~2GB data) (Broadcasting 0.5~2GB data) (Broadcasting 0.5GB data) with/without topology-awareness

Tested on IU Polar Grid with 1 Gbps Ethernet connection

e At least a factor of 120 on 125 nodes, compared with the simple broadcast algorithm

e The new topology-aware chain broadcasting algorithm gives 20% better performance than best C/C++ MPI methods (four
times faster than Java MPJ)

e A factor of 5 improvement over non-optimized (for topology) pipeline-based method over 150 nodes SA/SA



K-means Clustering Parallel Efficiency

1000000 points ‘ 10000000 points 100000000 points
50000 centroids | 5000 centroids 500 centroids
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Fig. 5. Time-To-Completion for KMeans on Different Backends

Shantenu Jha et al. A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures. 2014. SA/SA



4.9 Interdisciplinary Applications and Technologies

Map Collective Computing Paradigm

Harp
Spark
Parameter Server

SALSA
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°28% Why Collective Communications for Big Data Processing?

e (Collective Communication and Data Abstractions
— Our approach to optimize data movement

— Hierarchical data abstractions and operations defined on
top of them

* Map-Collective Programming Model

— Extended from MapReduce model to support collective
communications

— Two Level of BSP parallelism
* Harp Implementation
— A plug-in to Hadoop
— Component layers and the job flow

SALSA



The Concept of Harp Plug-in

Parallelism Model Architecture

MapReduce Model MapCollective Model

| | | ceeees | Framework

CO||eCtlve Communication [

EEE B -

Manager

MapReduce MapCollective
Applications Applications

MapReduce V2

SALSA



Hierarchical Data Abstraction

4 Broadcast, AllGather, AllIReduce, )

Regroup-(Combine/Reduce), Message-to-Vertex...
Message

Edge

Vertex
Table Table

Array Table Key-Value
Table <Array Type> K X Table Table

N /

C N Array Partition Edge Message Vertex Key-Value b
LCIEE  <Array Type> M Partition A Partition A Partition Partition
L Broadcast, Send

J
\

Broadcast, Seny

Transferable
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Map-Collective Programming Model

Collective Communication Hierarchical Data Types

Collective Communication Abstractions

Task Management

MapReduce

SALSA



Comparison of Iterative Computation Tools

| |
| |
Spark | Harp ' Parameter Server
| |
| |
| |
= > : : Worker : Server Group
i I \ |
§ I I A
Driver |« g Daemon e | ¥
o |
A 5
: : Worker Worker : Waorker Worker
« > G | Group Group
Daemon : w__ :
: Various Collective : Asynchronous
| Communication l Communication
. . . L. . | i | .
* |mplicit Data Distribution I Ulgraiens | Operations
* Implicit Communication L Explicit Data Distribution .= Explicit Data Distribution
. * Explicit Communication I« Implicit Communication
| |
M. Zaharia et al. “Spark: Cluster Computing with B. Zhang, Y. Ruan, J. Qiu. “Harp: Collective M. Li,.D. Ander§on e'F al. “Scaling Distributed )
Working Sets”. HotCloud, 2010. Communication on Hadoop”. IC2E, 2015. g/loalilhme Learning with the Parameter Server”. OSDI,

SALSA



© Iteration

Driver @ ‘
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Ilteration

Harp

Input (Training) Data

' 0 Load

Collective Communication (e.g. Allreduce)

SALSA



Parameter Server

Server

o &

@ Upload ) Download @ Upload ) Download @ Upload () Download

@ Iteration
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4.9 Interdisciplinary Applications and Technologies

Case Study 2:
Parallel Latent Dirichlet Allocation for Text Mining

SALSA



LDA: mining topics in text collection

“Budgets™ “Children™ “Education™
NEW MILLIOMN CHILDREN SCHOOL A
FILM TAX WOMEN STUDENTS Huge volume of Text Data
SH OW PROGRADM PEOPLE SCHOOLS - : :
MUSIC BUDGET CHILD EDUCATION information Overloadlng
MOVIE BILLION YEARS TEACHERS ic inci
— what on earth is inside the
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC TEXT Data?
BEST SPENDIN G PARENTS TEACHER
ACTOR NEW SAYS BENNETT ® Search
FIRST STATE FAMILY MANIGAT )
YORK PLAN WELFARE NAMPHY — find the documents relevant
OPERA MONEY MEN STATE
THEATER FPROGERAMS PERCENT PRESIDENT to N need (ad hoc querY)
ACTRESS GOVERNMENT CARE ELEMENTARY ° Filteri ng
LOVE CONGRESS LIFE HAITI
— fixed info needs and dynamic
The William Randolph Hearst Foundation wall give 51 25 m on o Lincoln Center, Metropoli- text data
tam Opera Co., New York Philharmonie and Juilliard School. "Ouwr board felt that we had a : L.
real opportunity to make a mark on the future of the performing arts with these zranis an act ° What S hew |nS|dE?
every bit as important as our traditional areas of support in health, medical rescarch, education d h | d '
and the social scrvices!” Hearst Foundation President Randolph A, Hearst said BMonday _ Iscover somet Ing ont
announcing the grants Lincoln Center’s share will be 52010, for its new building, which knOW
will house young artists and provide mew pubbic focilitics. The Metropolitan Cpera Co. and
Mews York Philharmonice wall recenmnve 54 . cach. The Julhard School, where music and
the performing  arts are taught, wiall get 5250, The Hearst Foundation., a leading supporter
of the Lincoln Center Consolidated Corporate Fund., will make its usual annual 51
donation, too.,

Figure 8 An example article from the AP corpus. Each color codes a different factor from which
the word 15 putatively generated.

Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993-1022 (2003). SA/SA



LDA and Topic Models

* Topic Models is a modeling « Document
technique, modeling the data by ¢ Word
probabilistic generative process. « Topic: semantic unit inside the data
e Latent Dirichlet Allocation (LDA) is « Topic Model
one widely used topic model. — documents are mixtures of topics,
* Inference algorithm for LDA is an where a topic is a pro:ability
iterative algorithm using share LA CIHE NS ALl
global model data. B Global Model Data
3.7 million docs
]
" > > t < 10k topics
j
1 million e X
00 words | W | W K*D
topic-doc matrix M,
V*D V*K

Document Collection Topic assignment word-doc matrix  word-topic matrix N,

Normalized co-

Mixture components Mixture weight
occurrence matrix P ENSA/ SA



Gibbs Sampling in LDA

A Collectve Communication Layer

Machine Leaming Library Iﬂll]ﬁlIZE . .
LDA sample topic index z; = k~ Mult(1/K)
- | Repeat until converge:

* Observed data: Wi;, word on position /in doc | for all documents j  [1, D] do

+ Try to estimate the latent variables (Model Data) for all words position i € [1, Nim] in document j do
m ZU tDpiC assignment EICCOI‘dinglytD WU’ /[ forthe current ass gnment k to a token t of word Wi , GeClrease cCoOU nes
* Nk, count matrix for word-topic distribution == lf k== 1! |
= Nij, count matrix for topic-document  distribution WLLLELIE] S

sample new topic index

+ With parameters NJ+p -y 4

— . (9
= Concentration Parameters- a, 8, control model sparseness s NEvg K

=D doc:uments, V "ocabulary SiZE, K tOpiES [/ forthe new assignment k* to the token t of word wjj, increase counts
Nkj+= 1, ne +=1;

k'~ p(zslz™, w) o
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Training Datasets used in LDA Experiments

The total number of model parameters is kept as 10 billion
on all the datasets.

Dataset enwiki clueweb bi-gram gutenberg
Num. of Docs 3.8M 50.5M 3.9M 26.2K
Num. of Tokens 1.1B 12.4B 1.7B 836.8M
Vocabulary 1M 1M 20M 1M

Doc Len. Avg/STD 293/523 224/352 434/776 31879/42147
Highest Word Freq. | 1714722 3989024 459631 1815049
Lowest Word Freq. 7 285 6 2
Num. of Topics 10K 10K 500 10K

Init. Model Size 2.0GB 14.7GB 5.9GB 1.7GB

Note: Both “enwiki” and “bi-gram” are English articles from Wikipedia [31]. “clueweb is a 10%

dataset from ClueWeb09, which is a collection of English web pages [32]. “gutenberg” is comprised

of English books from Project Gutenberg [33].

SALSA



Data Parallelism & Model Parallelism

. Data Parallelism Model Parallelism Model Parallelism
Data Parallelism In addition to splitting the
While the training data are split Model P S

Worker Worker Worker training data over parallel
) . g P
among parallel workers, the 1 r 1 Model1 | Model2 | | Model3 workers, the global model
global model is distributed on a [ Worker ] [ Worker | | Worker -

. data is split between
set of servers or existing workers.
workers and rotated

Each worker computes on a local _ between workers
model and updates it with the @) i i 1

synchronization between local
models and the global model.

[ Worker ] [ Worker ] [ Worker ]

Local Computation

e 1 1

L L I

[ Worker ] [ Worker ] [ Worker ]

Bingjing Zhang, Bo Peng and Judy Qiu, High Performance LDA through Collective Model Communication Optimization,
Proceedings of International Conference on Computational Science (ICCS), June 6-8, 2016. SA/SA



Harp-LDA Execution Flow

Ida-lgs Ida-rtt
(use syncLocalWithGlobal (use rotateGlobal) Ch d I Ie ngES
& syncGlobalWithLocal
prommmen s YRESIORETTIEN0se )..... T e High memory consumption for model
' Worker Worker Worker + | Worker Worker Worker . and input data
| ©Sync | | ©Sync| | ©Sync L .« High number of iterations (~1000)

* Computation intensive

.« Traditional “allreduce” operation in
MPI-LDA is not scalable.

* Harp-LDA uses AD-LDA (Approximate

cﬂ?ute ; 2 el |c 12 . . meute m?ute (:or?ute Distributed LDA) algorithm (based on
: P omps it [ Y P« P pute, Gibbs sampling algorithm)

NN EEN SEE .DDD ] DDD_ * Harp-LDA runs LDA in iterations of local
4 I — S S B ST computation and collective
Iterati communication to generate new global
A O Loa el

E Training Data j
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Intel Parallel Computing Center

at Indiana Umver5|t¥ o

Harp -LDA Performance Tests o'n I‘ntel Haswell Cluster N

Data Parallelism Model Parallelism
Performance Comparison Performance Comparison

1el0

1el0
|

______________________________________________________

..........................................................

Model Likelihood
<
i -
|

Model Likelihood

“L1 -------- o *—s ]gs : . . — it
T2 e A " == Yahoo!LDA ] . g | — Petuum ||
_L30 560 1600 1;00 20h0 ZSbﬂ 30h0 3500 _ZA(l 1600 2600 3600 4600 5600 6000
Execution Time (s) Execution Time (s)
“enwiki” dataset. 3.8 million Wikipedia “bi-gram” dataset. 3.9 Wikipedia documents,
documents, Vocabulary: 1 million words; Vocabulary: 20 million words; Topics: 500 topics;
Topics: 10k topics; alpha: 0.01; beta: 0.01; alpha: 0.01; beta: 0.01; iteration: 200

iteration: 200
SA/SA



Intel Parallel Computing Center
at Indiana Umver5|t¥ |

Model Likelihood

ExecutionTime Per Iteration (s)

(a) Elapsed Execution Time vs. Model Likelihood (b) Elapsed Execution Time vs. Iteration Execution Time

%1010

: : &—+ Petuum
] I I T
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Execution Time (s)

(a)

S
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(=]

g

5

20

I rit-compute
[ rit-overhead

I Petuum-compute
= B Petuum-overhead

Iteration

(c)

(c) First 10 Iteration Execution Times

\

ExecutionTime Per Iteration (s)

ExecutionTime Per Iteration (s)
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........ R S
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1 . : : *~—= rit-compuie
\ : : o | = e ntt-iter
60|y e e . i
: : . | = Petuum-compute
b : : © | = ¢ Petum-iter
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|

Execution Time (s)

(b)

B rit-compute
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Bl Petuum-compute
B Petuum-overhead

Iteration

(d)

(d) Final 10 Iteration Execution Times
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Intel Parallel Computing

at Indiana University

L |

Harp LDA ScaingTests

Harp LDA on Big Red Il Supercomputer (Cray) Harp LDA on Juliet (Intel Haswell)
30 1.1 25 1.1
o - - 1 > - - - - 1
3 08 P = 0.8
£20 07 8 £ o g
£ 5 15 78
£ 0.6 = £ 062
=15 = = m
= 0.5 ::: £ 10 0.5 =
210 0.4 & % 0483
§ 038 S 032
w 5 0.2 S5 0.2
0.1 01
0 0 0 0
0 >0 T 150 0 5 10 15 20 25 30 35
=@—Execution Time (hours) —@—Parallel Efficiency Nodes
=@ Execution Time (hours) —@-Parallel Efficiency
o . . Machine settings
Corpus: 3,775,554 Wikipedia documents, B
bul _ il ) . K . * Big Red Il: tested on 25, 50, 75, 100 and 125 nodes,
Vocabu ary: 1 million WOFdS, TOpICS. 10 topics; each node uses 32 parallel threads; Gemini
alpha: 0.01; beta: 0.01; iteration: 200 interconnect

e Juliet: tested on 10, 15, 20, 25, 30 nodes, each node
uses 64 parallel threads on 36 core Intel Haswell node
(each with 2 chips); infiniband interconnect SA/SA



4.9 Interdisciplinary Applications and Technologies

Case Study 3:
Parallel Tweet Online Clustering

Map Streaming Computing Paradigm

SALSA



Parallel Tweet Online Clustering with Apache Storm

*" IUNI analysis pipeline for meme clustering and classification : Detecting Early Signatures of
Persuasion in Information Cascades

* Implement with HBase + Hadoop (Batch) and HBase + Storm(Streaming) + ActiveMQ,
* 2 million streaming tweets processed in 40 minutes; 35,000 clusters

e Storm Bolts coordinated by ActiveMQ to synchronize parallel cluster center updates — add
loops/iterations to Apache Storm

: " AT T
Ei - - g’
+ & % : SE
-. K .g ok 2 40 < ad
CLUSTERS MEME

Xiaoming Gao, Emilio Ferrara, Judy Qiu, Parallel Clustering of High-Dimensional Social Media Data Streams Proceedings of CCGrid, May 4-7, 2015

SALSA



Social Media Observatory

Real Time Analysis on Data Streams Interactive -=-—:
(Storm) —T

Data Strea Pub/Sub o : Sentiment Movie
’Source Messaging — Analysis Generation

Storage Batch Analysis on Historical Data
Substrate (Hadoop/Harp)

(IndexedHBase)

Data Collection, Storage, Analytics and Visualization Architecture Diffusion ¥ Network

» Starting from late 2010, we have collected an ongoing, near uninterrupted sample of 10% public Twitter streaming record (approximate 100
billion tweets to date). The existing collection has 180 TB of historical data and loading rate of 40 million tweets per day.

* IndexedHBase can automatically retrieve data from the 10% Twitter stream (“gardenhose”), split obtained Tweets into partitions, and parse
and index such data on a daily base. With multiple parallel partition loaders, one day’s worth of data can be loaded within a few hours.

* We have shown in our recent work to be able to process the Twitter 10% data stream in real-time with 96-way parallelism. SA/SA



Sequential Algorithm for Clustering Tweet Stream

* Online (streaming) K-Means clustering algorithm with sliding time window
and outlier detection

* Group tweets in a time window as protomemes:

— Label protomemes (points in space to be clustered) by “markers”, which
are Hashtags, User mentions, URLs, and phrases

— A phrase is defined as the textual content of a tweet that remains after
removing the hashtags, mentions, URLs, and after stopping and
stemming

— Number of tweets in a protomeme : Min: 1, Max :206, Average 1.33

* Note a given tweet can be in more than one protomeme
— One tweet on average appears in 2.37 protomemes
— And number of protomemes is 1.8 times number of tweets

SALSA



Online K-Means clustering

(1) Slide time window by one time step
(2) Delete old protomemes out of time window from their clusters
(3) Generate protomemes for tweets in this step

(4) For each new protomeme classify in old or new cluster (outlier)

- EEm S S S S S B S S e S S ey gem EEm S S S S S B S S S S S ey

N
7
N
@\
7

- o - - = -

—-—— o o o . e . . E——
—-—— o o o . o . . E——

- o o o e = =
N .

If marker in Otherwise it is
_ If near a cluster, )
common with a . an outlier and a
\ \ assign to \ ,
\ cluster member, \ \ candidate new
S - _ T oo o o o nearest cluster S e e — -
assign to that cluster

cluster omoA



Worker Process ActiveMQ
Clustering Bolt Broker

7/% Clustering Bolt i\\(
""""__ __________ ynchronization
Protomeme : .
tweet | T |7 gmmmmmmmmeesmmemeee Coordinator
— | Generator Worker Process
stream _ Bolt
Spout Clustering Bolt :
Clustering Bolt }i ‘ Calculate Cluster Centers
i\(Synchronization initiation methods: Parallelize Similarity Calculation
- Spout initiation by broadcasting INIT message
- Clustering bolt initiation by local counting } Suffer from variation of processing speed
- Sync coordinator initiation by global counting
(of #protomemes)

56
SALSA



Parallel Tweet Clustering with Storm

Scalability Comparison between Cluster-delta and Full-centroids

22.0

1 3 & 12 24 48 96
MNumber of Parallel cbolts

—e— Cluster-delta (Madrid) —a— Full-centroids (Madrid) Cluster-delta (Moe)

* Speedup on up to 96 bolts on two clusters, Moe and Madrid
* Red curve is old online Kmeans algorithm; green and blue new algorithm
e Full Twitter — 1000 way parallelism (expected)

SALSA



Outline

@ Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

& Cloud Computing @ Clouds are important for Big Data Analysis
Pl@t‘\hz' @ Clouds are important for Education and Training
Twister &

. - Interdisciplinary Applications and Technologies
fwzst% .
Iterative MapReduce for Aﬂﬁ;ﬁ

Q Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS

Summary and Future

r\7Ha rp

SALSA


http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/
http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/plotviz/index.html
http://salsahpc.indiana.edu/plotviz/index.html

q&w

o
'

Output

(1) Map Only (2) Classic
Pleasingly Parallel Map-Reduce
Input Input

vy

v

map

]

o

o

reduce

4

(3) Iterative Map Reduce or
Map-Collective

Input Iteratih

map

o ]

] ]

reduce

(4) Point to Point or
Map-Communication

(5) Map-Streaming

Events

(6) Shared memory
Map-Communication

Shared Memory

Mafcfmumca ion

0 .00

_ BLAST Analysis _ High Energy Physics _ Expectation Maximization |- Classic MPI - Streaming images from _ Difficult to parallelize
_ Local Machine (HEP) Histograms, _ Clustering - PDE Solvers and Synchrotron sources, _ asynchronous parallel
Learning - Web search _ Linear Algebra Particle Dynamics Telescopes, Graph
- Pleasingly Parallel - Recommender Engines - PageRank - Graph Internet of Things
e These 3 Paradigms are my FoCuS =)
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Platform as a Service

Languages

Strearnlng Parallel Runtime
Coordination

Caching

L Data Management

Data Transfer
Scheduling
File Systems
Formats
Virualization

Infrastructure

omparison of current Data Analytics stack from Cloud and HPC infrastructure

Big Data ABDS HPC, Cluster

Crunch, Tez, Cloud Dataflow mslp

<4mmmmn Kepler, Pegasus

MLlib/Mahout, R, Python msp <mm MVatlab, Eclipse, Apps
Pig, Hive, Drill m———) i

App Engine, BlueMix, m—)p 4mm XSEDE Software Stack T
Elastic Beanstalk My Focus

Java, Erlang, SQL, SparQL» 4 Fortran, C/C++ l
Storm, Kafka, H|n35|5-|

MapReduce m—) ' | 4m MIPI/OpnMP/OpenCL :
Memcached e B — — — ———— === === === = B
Hbase, Neo4). MySQL s 4= iRODS

Sqoop meesss——— 4m GridFTP

Yarn eeeessssssss—— 4mm Slurm

HDFS, Object Stores m—)p <4mmm L ustre

Thrift, Protobuf m——) 4= FITS, HDF

Openstack mee———— 4sssmmmm Docker, SR-I0V
CLOUDS SUPERCOMPUTERS

J. Qiuy, S. Jha, A. Luckow, G. Fox, TowardsHPC-ABDS: An Initial High-Performance Big Data Stack, proceedings of ACM 1st Big Data Interoperability Framework Workshop;
Building Robust Big Data ecosystem, NIST special publication, March 13-21, 2014. SALSA



E Graph Model

For
Iterations/
Learning

B ey

Stratosphere / Flink

ror I sa W sama | i
i = @ fxedcommunication
LI ____________ I__ __________ “ve I patterns!
| . Hive | i
i i :
i  sparksQL | i i
. MRQL
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Computation Characteristics of Big Data Tools

Computation

Tool Data Abstraction Communication Pattern
Model
MPI [1] Loosely N/A Arrays and objects sending/receiving or collective
Synchronous communication operations
Hadoop [2] Shuffle (disk-based) between Map stage and Reduce stage
: (Iterative) Key-Values :
Twister [3] MapReduce Regroups (in-memory) between Map stage and Reduce stage,
“broadcast” and “aggregate”
Spark [4] RDD RDD Transformations on RDD, “broadcast and “aggregate”
Dryad [5] Communication is between two connected vertex processes in
DAG N/A :
the execution of DAG
Giraph [6] Graph-based message communication following Pregel model
Hama [7] Graph-based message communication following Pregel model
or direct message communication between workers
GraphlLab (Dato) Graph/BSP Graph Graph-based communication through caching and fetching of

[8,9, 10]

GraphX [11]

ghost vertices and edges or the communication between
master vertex and its replicas in PowerGraph (GAS) model

Graph-based communication supports Pregel model and
PowerGraph model

SALSA



Outline

Q Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

#*Cloud Computing @ Clouds are important for Big Data Analysis
Pﬂ@t\hz @ Clouds are important for education: CloudMOOC
Twister &
. - . Interdisciplinary Applications and Technologies
Ny Q Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS
'Havrp
Summary and Future
IndexedHB
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http://salsahpc.indiana.edu/plotviz/index.html
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Progress in HPC-ABDS Runtime

Standalone Twister: Iterative Execution (caching) and High performance communication extended
to first Map-Collective runtime

 HPC-ABDS Plugin Harp: adds HPC communication performance and rich data abstractions to
Hadoop

* Online Clustering with Storm integrates parallel and dataflow computing models

 Development of library of Collectives to use at Reduce phase
— Broadcast and Gather needed by current applications
— Discover other important ones (e.g. Allgather, Global-local sync, rotation)

— Implement efficiently on each platform (e.g. Amazon, Azure, Big Red Il, Haswell Clusters)

* Clearer application fault tolerance model based on implicit synchronizations points at iteration end
points

* Runtime for data parallel languages with initial work on Apache Pig enhanced with Harp

* Integrate GPU support with Map-Collective model including deep learning

SALSA



Summary and Future Apache

Identification of Apache Big Data Software Stack and integration with High
Performance Computing Stack to give HPC-ABDS

— ABDS/Many Big Data applications/algorithms need HPC for performance
— HPC needs ABDS for rich software model productivity/sustainability
|dentification of Six Computation Models for HPC and Data Analytics
|dentification and Study of Map-Collective and Map-Streaming Model

Integrate streaming and batch workflow as in social observatory — look at
Apache Beam and Google Cloud Dataflow

Implement National Strategic Computing Initiative HPC-Big Data Convergence
with HPC-ABDS

Continue Twister/ Twister4Azure to Harp conversion with more data analytics
— Apache Pig, Hadoop, Storm, and HBase enhancement in the form of plug-in
Start HPC incubator project in Apache to bring HPC-ABDS to community

SALSA
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 Extra slides

(WwHarp

The Harp Library

Harp is an implementation designed in a pluggable way to bring high performance to
the Apache Big Data Stack and bridge the differences between Hadoop ecosystem and
HPC system through a clear communication abstraction, which did not exist before in
the Hadoop ecosystem.

Hadoop Plugin that targets Hadoop 2.2.0

Provides implementation of the collective communication abstractions and
MapCollective programming model

Project Link: http://salsaproj.indiana.edu/harp/index.html

Source Code Link: https://github.com/jessezbj/harp-project

We built Map-Collective as a unified model to improve the performance and expressiveness of Big
Data tools. We ran Harp on K-means, Graph Layout, and Multidimensional Scaling algorithms with
realistic application datasets over 4096 cores on the U BigRed Il Supercomputer (Cray/Gemini) where
we have achieved linear speedup.

SALSA
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Collective Communication Operations

Operation Name Data Abstraction Algorithm Time Complexity

arrays, key-value

broadcast . . chain n
pairs & vertices B
arrays, key-value

allgather . . bucket n

8 pairs & vertices pnp
bi-directional
arrays, key-value exchange (logzp)nf
allreduce DR
pairs
regroup-allgather 2npf
regrou . .
group arrays, key-value point-to-point npB
pairs & vertices direct sending

send messages messages, point-to-point np

to vertices vertices direct sending

send edges to . oint-to-point

& edges, vertices ; B np

vertices direct sending
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aIIreduce centroids

G

On each node do
for t < iteration-num; t<t+1 do
for each p in points do
for each ¢ in centroids do

Calculate the distance between p and c;

Add point p to the closest centroid c;
Allreduce the local point sum;
Compute the new centroids;

Ul
(=]
o
o

Y
o
o
o
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2000

Execution Time (Seconds)

=
o
o
o

o

K-means Clustering

140
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O o
o O
dnpaads

20

—¢
120

0

0 20 140

40 60 80

Number of Nodes

—8-500M points 10K centroids Execution Time
—o—5M points 1M centroids Execution Time
—8-500M points 10K centroids Speedup
—o—5M points 1M centroids Speedup

100

Test Environment: Big Red Il
http://kb.iu.edu/data/bcqt.html
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Force-directed Graph Drawing Algorithm

8000 100
© 7000 T
-g 6000 80
S
£ 5000 604
(0]
£ 4000 o
|—
eo0o0o0o0o0 g 3000 40%
§ 2000 20
llgath iti f & 100
allgather positions o . N Lo |,

0O 20 40 60 80 100 120 140

Number of Nodes
—e—Execution Time ——Speedup

vertices

On each node do

for t < iteration-num; t<t+l do
Calculate repulsive forces and displacements;
Calculate attractive forces and displacements;
Move the points with displacements limited by
temperature;
Allgather the new coordination values of the
points;

* Near linear
scalability Per-
iteration on
sequential R for 2012
network: 6035 seconds

T. Fruchterman, M. Reingold. “Graph Drawing by Force-Directed Placement”, Software Practice & Experience 21 (11), 1991. SALSA



WDA-SMACOF

_ Scaling by Majorizing a Complicated Function (SMACOF) MDS algorithm

4000 120
(7]
e 100
S3000
a 80
- =
22000 Seo
c— ()]
g &
$1000 40
5 20
@ 0
& 0
0O 20 40 60 80 100 120 140
N B || Number of Nodes 0 20 40 60 80 100 120 140
allreduce the stress value 100K points 200K points Number of Nodes
-— e - 300K points 400K points 100K points 200K points 300K points

On each node do
while current-temperature > min-temperature do
while stress-difference > threshold do
Calculate BC matrix;
Use conjugate gradient process to solve the
new coordination values;
(this i1s an iterative process which contains
allgather and allreduce operations)
Compute and allreduce the new stress wvalue;
Calculate the difference of the stress
values;
Adjust the current temperature;

Y. Ruan et al. “A Robust and Scalable Solution for Interpolative Multidimensional Scaling With Weighting”. E-Science, 2013. SALSA



