
SALSA

Data-enabled Science and Engineering:
Scalable High Performance Data Analytics

March 14, 2016

Judy Qiu

Computer Science Department, Indiana University
E-mail: xqiu@indiana.edu

ISL/NCSA Colloquium Series

SALSA

1. Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

2. Clouds are important for Big Data Analysis

3. Clouds are important for Education and Training

4. Interdisciplinary Applications and Technologies

5. Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS

6. Summary and Future

Outline

SALSA

Big Data Inter-
disciplinary

HPC Cloud

• Impacts preservation, access/use,
programming model

• Data Analysis/Machine Learning

• Batch and Stream Processing

• In all fields of science and daily life

• Health, social, financial, policy,
national security, environment

• Better understanding the world
surrounding us

• Parallel computing is important

• Performance from Multicore
(Manycore or GPU)

• Commercially supported data center
model

• IaaS, PaaS, SaaS

SALSA

What is Big Data ?

Volume Velocity Variety Veracity

Data at Scale
Terabytes to

Petabytes of Data

Data in Motion
• Streaming data
• Real-time or near

real-time to respond

Data in Many
Forms

• Structured and
unstructured data

• Text, numbers, and
pixels

Data Uncertainty
Inconsistent,
incomplete,

ambiguous, and
approximated data

Big Data is defined by IBM as “any data that cannot be captured, managed and/or processed
using traditional data management components and techniques.”

SALSA

Challenges and Opportunities

• Large-scale parallel simulations and data analysis drive scientific
discovery across many disciplines

• Research a holistic approach that will enable performance portability
to any machine, while increasing developer productivity and
accelerating the advance of science

• Organize my research as Data-Enabled Discovery Environments for
Science and Engineering (DEDESE)

― DOE Workshop Report: Machine Learning and Understanding for Intelligent Extreme
Scale Scientific Computing and Discovery, January 7-9, 2015

― NSF Career: Map-Collective model for DEDESE and HPC-Cloud
Integration

SALSA

Application
• Analytics

Algorithm

• Machine Learning

Data
• Big Data

System
• Hadoop with Harp

Computation Model

• Synchronization &
Consistency

The System Solution to Big Data Problems

SALSA

1. Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

2. Clouds are important for Big Data Analysis

3. Clouds are important for Education and Training

4. Interdisciplinary Applications and Technologies

5. Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS

6. Summary and Future

Outline

http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/
http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/plotviz/index.html
http://salsahpc.indiana.edu/plotviz/index.html

SALSA

Motivation of Iterative MapReduce

Input

Output

map

Map-Only

Input

map

reduce

MapReduce

Input

map

reduce

iterations

Iterative
MapReduce

Pij

MPI and Point-to-
Point

Sequential

Input

Output

map

MapReduce
Classic Parallel Runtimes

(MPI)

Data Centered, QoS Efficient and
Proven techniques

Expand the Applicability of MapReduce to more classes of Applications

SALSA

MapReduce Programming Model & Architecture

• Map(), Reduce(), and the intermediate key partitioning strategy determine the algorithm

• Input and Output => Distributed file system

• Intermediate data => Disk -> Network -> Disk

• Scheduling =>Dynamic

• Fault tolerance (Assumption: Master failures are rare)

Input Data (Partitions)

Intermediate <Key, Value> space
partitioned using a key partition
function

Map (Key , Value)

reduce(Key , List<Value>)

Sort

Output

Worker NodesMaster Node

Distributed
File System

Local disks

Inform
Master

Schedule
Reducers

Distributed
File System

Download data

Record readers
Read records from
data partitions

Sort input <key,value>
pairs to groups

Google MapReduce , Apache
Hadoop

SALSA

Reduce (Key, List<Value>)

Map(Key, Value)

Loop Invariant Data
Loaded only once

Faster intermediate data
transfer mechanism

Combiner operation to
collect all reduce outputs

Cacheable map/reduce
tasks

(in memory)

Configure()

Combine(Map<Key,Value>)

Programming Model for Iterative MapReduce

• Distinction on loop invariant (e.g. input) data and variable (e.g. intermediate) data
• Cacheable map/reduce tasks (in-memory)
• Combine operation

Main Program

while(..)

{

runMapReduce(..)

}

Intermediate data

Iterative MapReduce is a programming model that applies a computation (e.g.
Map task) or function repeatedly, using output from one iteration as the input
of the next iteration. By using this pattern, it can solve complex computation
problems by using apparently simple (user defined) functions.

Twister was our
initial
implementation
with first paper
having 585 Google
Scholar citations

SALSA

MapReduce Optimized for Iterative Computations

Twister: the speedy elephant

In-Memory

• Cacheable

map/reduce tasks

Data Flow

• Iterative

• Loop Invariant

• Variable data

Thread

• Lightweight

• Local aggregation

Map-Collective

• Communication

patterns optimized for

large intermediate data

transfer

Portability

• HPC (Java)

• Azure Cloud (C#)

• Supercomputer

(C++, Java)

Abstractions

• Microsoft has developed Daytona, an Iterative MapReduce runtime, which is based on Twister

• Twister4Azure is our prototype that demonstrates portability of Iterative MapReduce from HPC to PaaS/Azure Cloud Azure Queues
for scheduling, Tables to store metadata and monitoring data, Blobs for input/output/intermediate data storage.

SALSA

Iterative Computations

K-means
Matrix

Multiplication

Performance of K-Means Parallel Overhead Matrix Multiplication

SALSA

Master Node

Twister
Driver

Twister-MDS

ActiveMQ
Broker

MDS Monitor

PlotViz

I. Send message to start
the job

II. Send intermediate
results

Client Node

Demo of Multi-Dimensional Scaling using
Iterative MapReduce

• Input: 30K metagenomics data

• MDS reads pairwise distance matrix of all sequences

• Output: 3D coordinates visualized in PlotViz

SALSA

Iterative MapReduce - MDS Demo

SALSA

1. Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

2. Clouds are important for Big Data Analysis

3. Clouds are important for Education and Training: CloudMOOC

4. Interdisciplinary Applications and Technologies

5. Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS

6. Summary and Future

Cloud MOOC

Outline

http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/
http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/plotviz/index.html
http://salsahpc.indiana.edu/plotviz/index.html

SALSA

Education and Training using Cloud

• McKinsey says that there will be up to 190,000 nerds and 1.5 million extra managers
needed in Data Science by 2018 in USA

• Many more jobs than simulation (third paradigm) where Computational Science not
very successful as curriculum

• Need curricula to educate people to use (or design) Clouds running Data Analytics
processing Big Data to solve problems (e.g. health, social, financial, policy, national
security, scientific experiment, environment)

SALSA

SALSA

SALSA

SALSA

An open online training framework

• No single group or strategy that will be able to cover the full spectrum of
educational needs required to comprehensively train biomedical big data
researchers

• Building a community repository, and creating lecture content and example
courses with hands-on virtual machines for biomedical big data training

Biomedical Big Data Training Collaborative

SALSA

The playlist feature is demonstrated in our CloudMOOC course, which teaches cloud computing and
includes topics like Hadoop, OpenStack and NoSQL databases. This figure shows that a student can
simply drag and drop course modules (left) to make a playlist of lessons (right).

Customization using Playlist for Cloud Computing MOOC

SALSA

Curriculum Development

• Data-enabled Science covers Data curation and management, Analytics (Algorithms), Runtime (e.g.
MapReduce, Workflow, NoSQL), Visualization for Applications

• Some courses aimed at one aspect of this; our courses cover integration and link to applications

• Look at Massive Open Online Courses (MOOCs) to support online modules that can be used by other
universities; initially at ECSU and other HBCU

• 3 funded collaborative curriculum developments using MOOCs

– Data Science - CloudMOOC (Google Course Builder)

– Biomedical training community repository - NIH/MOOC (NIH)

– HBCU-STEM curriculum development - HBCU (NSF) starts Fall 2015

SALSA

Remote Sensing Curriculum Enhancement using
Cloud Computing

ECSU-IU collaboration in environmental
applications of Microwave Remote
Sensing using Cloud Computing
technology.

Demonstrate the concept that Data and
Computational Science (remote sensing)
curriculum can drive new workforce and
research opportunities at Minority Serving
Institutions (MSI) by exploiting
enhancements using Cloud Computing
technology.

We will explore multiple targeted courses
built from this repository of shared
customizable lessons.

SALSA

1. Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

2. Clouds are important for Big Data Analysis

3. Clouds are important for education: CloudMOOC

4. Interdisciplinary Applications and Technologies

5. Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS

6. Summary and Future

Cloud MOOC

Outline

http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/
http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/plotviz/index.html
http://salsahpc.indiana.edu/plotviz/index.html

SALSA

Large Scale Data Analysis Applications

Case Studies

• Bioinformatics: Multi-Dimensional Scaling (MDS) on gene sequence data

• Computer Vision: Kmeans Clustering on image data (high dimensional model data)

• Text Mining: LDA on wikipedia data (dynamic model data due to sampling)

• Complex Network: Online Kmeans (streaming data)

• Deep Learning: Convolutional Neural Networks on image data

Computer Vision Complex NetworksBioinformatics Deep LearningText Mining

SALSASALSA

Case Study 1:
High Dimensional Image Data Clustering

Map Collective Computing Paradigm

4. Interdisciplinary Applications and Technologies

SALSA

Data Intensive Batch Kmeans Clustering

Image Classification: 7 million images; 512 features per image; 1 million clusters
10K Map tasks; 64G broadcasting data (1GB data transfer per Map task node);
20 TB intermediate data in shuffling.

Collaborative work with Prof. David Crandall

SALSA

High Dimensional Image Data

• K-means Clustering algorithm is used to cluster the images with similar features.

• In image clustering application, each image is characterized as a data point (vector) with
dimension in range 512 - 2048. Each value (feature) ranges from 0 to 255.

• Around 180 million vectors in full problem

• Currently, we are able to run K-means Clustering up to 1 million clusters and 7 million data
points on 125 computer nodes.

– 10K Map tasks; 64G broadcast data (1GB data transfer per Map task node);

– 20 TB intermediate data in shuffling.

SALSA

Twister Collective Communications

• Broadcasting

– Data could be large

– Chain & MST

– Gather scatter

– Local global sync

– Rotation

• Map Collectives

– Local merge

• Reduce Collectives

– Collect but no merge

• Combine

– Direct download or Gather

Map Tasks Map Tasks

Map Collective

Reduce Tasks

Reduce Collective

Gather

Map Collective

Reduce Tasks

Reduce Collective

Map Tasks

Map Collective

Reduce Tasks

Reduce Collective

Broadcast

SALSA

• At least a factor of 120 on 125 nodes, compared with the simple broadcast algorithm

• The new topology-aware chain broadcasting algorithm gives 20% better performance than best C/C++ MPI methods (four
times faster than Java MPJ)

• A factor of 5 improvement over non-optimized (for topology) pipeline-based method over 150 nodes

Tested on IU Polar Grid with 1 Gbps Ethernet connection

High Performance Data Movement

SALSA

K-means Clustering Parallel Efficiency

Shantenu Jha et al. A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures. 2014.

SALSASALSA

Map Collective Computing Paradigm

Harp
Spark

Parameter Server

4. Interdisciplinary Applications and Technologies

SALSA

Why Collective Communications for Big Data Processing?

• Collective Communication and Data Abstractions

– Our approach to optimize data movement

– Hierarchical data abstractions and operations defined on
top of them

• Map-Collective Programming Model

– Extended from MapReduce model to support collective
communications

– Two Level of BSP parallelism

• Harp Implementation

– A plug-in to Hadoop

– Component layers and the job flow

SALSA

Parallelism Model Architecture

Shuffle
M M M M

Collective Communication

M M M M

R R

MapCollective ModelMapReduce Model

YARN

MapReduce V2

Harp

MapReduce
Applications

MapCollective
ApplicationsApplication

Framework

Resource
Manager

The Concept of Harp Plug-in

SALSA

Vertex
Table

Key-Value
Partition

Array

Transferable

Key-
Values

Vertices, Edges,
Messages

Double
Array

Int
Array

Long
Array

Array Partition
<Array Type>

Object

Vertex
Partition

Edge
Partition

Array Table
<Array Type>

Message
Partition

Key-Value
Table

Byte
Array

Message
Table

Edge
Table

Broadcast, Send

Broadcast, AllGather, AllReduce,
Regroup-(Combine/Reduce), Message-to-Vertex…

Broadcast, Send

Table

Partition

Basic Types

Hierarchical Data Abstraction

SALSA

YARN

MapReduce V2

Harp

MapReduce Applications MapCollective Applications

Harp Component Layers

MapReduce

Collective Communication Abstractions

Map-Collective Programming Model

Applications: K-Means, WDA-SMACOF, Graph-Drawing…

Collective Communication
Operators

Hierarchical Data Types
(Tables & Partitions)

Memory Resource
Pool

Collective
Communication APIs

Array, Key-Value, Graph
Data Abstraction

MapCollective
Interface

Task Management

SALSA

Daemon

Spark Parameter Server

Daemon

Daemon

• Implicit Data Distribution
• Implicit Communication • Explicit Data Distribution

• Explicit Communication
• Explicit Data Distribution
• Implicit Communication

Various Collective
Communication

Operations

Worker

Harp

Driver

Worker

Worker Worker Worker
Group

Server Group

Worker
Group

Comparison of Iterative Computation Tools

Asynchronous
Communication

Operations

M. Zaharia et al. “Spark: Cluster Computing with
Working Sets”. HotCloud, 2010.

B. Zhang, Y. Ruan, J. Qiu. “Harp: Collective
Communication on Hadoop”. IC2E, 2015.

M. Li, D. Anderson et al. “Scaling Distributed
Machine Learning with the Parameter Server”. OSDI,
2014.

SALSA

TaskTask

Driver

Task

Input (Training) Data

Load Load Load1 1 1

5 Iteration

Compute3

Current
Model

Broadcast2

Reduce4

Current Model

Compute3

Current Model

Compute3

New Model New Model New Model
New

Model

Current Model

Spark

SALSA

Task

Input (Training) Data

Load Load Load1 1 1

4 Iteration

Current Model

Compute2

New Model

3

Task

Current Model

Compute2

New Model

3

Task

Current Model

Compute2

New Model

3

Collective Communication (e.g. Allreduce)

Harp

SALSA

TaskTaskTask

Training Data

Load Load Load1 1 1

5 Iteration

Local Model

Compute3

Server

Global Model

2 Download4 Upload 2 Download4 Upload 2 Download4 Upload

Local Model

Compute3

Local Model

Compute3

Parameter Server

SALSASALSA

Case Study 2:
Parallel Latent Dirichlet Allocation for Text Mining

Map Collective Computing Paradigm

4. Interdisciplinary Applications and Technologies

SALSA

LDA: mining topics in text collection

• Huge volume of Text Data

– information overloading

– what on earth is inside the
TEXT Data?

• Search

– find the documents relevant
to my need (ad hoc query)

• Filtering

– fixed info needs and dynamic
text data

• What's new inside?

– discover something I don't
know

Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).

SALSA

• Topic Models is a modeling
technique, modeling the data by
probabilistic generative process.

• Latent Dirichlet Allocation (LDA) is
one widely used topic model.

• Inference algorithm for LDA is an
iterative algorithm using share
global model data.

LDA and Topic Models

• Document

• Word

• Topic: semantic unit inside the data

• Topic Model

– documents are mixtures of topics,
where a topic is a probability
distribution over words

Normalized co-
occurrence matrix

Mixture components Mixture weights

1 million
words

3.7 million docs

10k topics

Global Model Data

SALSA

Gibbs Sampling in LDA

∑
___k‘ ~ ∞

SALSA

Training Datasets used in LDA Experiments

Dataset enwiki clueweb bi-gram gutenberg

Num. of Docs 3.8M 50.5M 3.9M 26.2K

Num. of Tokens 1.1B 12.4B 1.7B 836.8M

Vocabulary 1M 1M 20M 1M

Doc Len. Avg/STD 293/523 224/352 434/776 31879/42147

Highest Word Freq. 1714722 3989024 459631 1815049

Lowest Word Freq. 7 285 6 2

Num. of Topics 10K 10K 500 10K

Init. Model Size 2.0GB 14.7GB 5.9GB 1.7GB

Note: Both “enwiki” and “bi-gram” are English articles from Wikipedia [31]. “clueweb is a 10%
dataset from ClueWeb09, which is a collection of English web pages [32]. “gutenberg” is comprised
of English books from Project Gutenberg [33].

The total number of model parameters is kept as 10 billion
on all the datasets.

SALSA

Data Parallelism & Model Parallelism

Data Parallelism
While the training data are split
among parallel workers, the
global model is distributed on a
set of servers or existing workers.
Each worker computes on a local
model and updates it with the
synchronization between local
models and the global model.

Model Parallelism
In addition to splitting the
training data over parallel
workers, the global model
data is split between
workers and rotated
between workers

Bingjing Zhang, Bo Peng and Judy Qiu, High Performance LDA through Collective Model Communication Optimization,
Proceedings of International Conference on Computational Science (ICCS), June 6-8, 2016.

SALSA

• High memory consumption for model
and input data

• High number of iterations (~1000)

• Computation intensive

• Traditional “allreduce” operation in

MPI-LDA is not scalable.

Harp-LDA Execution Flow

Challenges

• Harp-LDA uses AD-LDA (Approximate
Distributed LDA) algorithm (based on
Gibbs sampling algorithm)

• Harp-LDA runs LDA in iterations of local
computation and collective
communication to generate new global
model.

SALSA

Harp-LDA Performance Tests on Intel Haswell Cluster

“enwiki” dataset. 3.8 million Wikipedia
documents, Vocabulary: 1 million words;
Topics: 10k topics; alpha: 0.01; beta: 0.01;
iteration: 200

“bi-gram” dataset. 3.9 Wikipedia documents,
Vocabulary: 20 million words; Topics: 500 topics;
alpha: 0.01; beta: 0.01; iteration: 200

Data Parallelism
Performance Comparison

Model Parallelism
Performance Comparison

SALSA

Harp-LDA Model Parallelism on “bi-gram”

(a) Elapsed Execution Time vs. Model Likelihood (b) Elapsed Execution Time vs. Iteration Execution Time
(c) First 10 Iteration Execution Times (d) Final 10 Iteration Execution Times

SALSA

Harp LDA on Big Red II Supercomputer (Cray)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0

5

10

15

20

25

30

0 50 100 150

P
arallel Efficien

cy

Ex
ec

u
ti

o
n

 T
im

e
(h

o
u

rs
)

Nodes
Execution Time (hours) Parallel Efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0

5

10

15

20

25

0 5 10 15 20 25 30 35

P
arallel Efficien

cy

Ex
ec

u
ti

o
n

 T
im

e
(h

o
u

rs
)

Nodes
Execution Time (hours) Parallel Efficiency

Harp LDA on Juliet (Intel Haswell)

Machine settings

• Big Red II: tested on 25, 50, 75, 100 and 125 nodes,
each node uses 32 parallel threads; Gemini
interconnect

• Juliet: tested on 10, 15, 20, 25, 30 nodes, each node
uses 64 parallel threads on 36 core Intel Haswell node
(each with 2 chips); infiniband interconnect

Harp LDA Scaling Tests

Corpus: 3,775,554 Wikipedia documents,
Vocabulary: 1 million words; Topics: 10k topics;
alpha: 0.01; beta: 0.01; iteration: 200

SALSASALSA

Case Study 3:
Parallel Tweet Online Clustering

Map Streaming Computing Paradigm

4. Interdisciplinary Applications and Technologies

SALSA

• IUNI analysis pipeline for meme clustering and classification : Detecting Early Signatures of
Persuasion in Information Cascades

• Implement with HBase + Hadoop (Batch) and HBase + Storm(Streaming) + ActiveMQ

• 2 million streaming tweets processed in 40 minutes; 35,000 clusters

• Storm Bolts coordinated by ActiveMQ to synchronize parallel cluster center updates – add
loops/iterations to Apache Storm

Parallel Tweet Online Clustering with Apache Storm

Xiaoming Gao, Emilio Ferrara, Judy Qiu, Parallel Clustering of High-Dimensional Social Media Data Streams Proceedings of CCGrid, May 4-7, 2015

SALSA

Batch Analysis on Historical Data
(Hadoop/Harp)

Pub/Sub
Messaging Klatsch Classifiers Detection Sentiment

Analysis
Data Stream
Source

Interactive
Query

Storage
Substrate

(IndexedHBase)

Map

Timeline

Statistics

Diffusion Network

Historical Data

Movie
Generation

Real Time Analysis on Data Streams
(Storm)

Social Media Observatory

• Starting from late 2010, we have collected an ongoing, near uninterrupted sample of 10% public Twitter streaming record (approximate 100
billion tweets to date). The existing collection has 180 TB of historical data and loading rate of 40 million tweets per day.

• IndexedHBase can automatically retrieve data from the 10% Twitter stream (“gardenhose”), split obtained Tweets into partitions, and parse
and index such data on a daily base. With multiple parallel partition loaders, one day’s worth of data can be loaded within a few hours.

• We have shown in our recent work to be able to process the Twitter 10% data stream in real-time with 96-way parallelism.

Data Collection, Storage, Analytics and Visualization Architecture

SALSA
54

Sequential Algorithm for Clustering Tweet Stream

• Online (streaming) K-Means clustering algorithm with

and

• Group tweets in a time window as protomemes:

– Label protomemes (points in space to be clustered) by “markers”, which
are , , , and

– A phrase is defined as the textual content of a tweet that remains after
removing the hashtags, mentions, URLs, and after stopping and
stemming

– Number of tweets in a e : Min: 1, Max :206, Average 1.33

• Note a given tweet can be in more than one protomeme

– One tweet on average appears in 2.37 protomemes

– And number of protomemes is 1.8 times number of tweets

SALSA
55

(1) Slide time window by one time step

(2) Delete old protomemes out of time window from their clusters

(3) Generate protomemes for tweets in this step

(4) For each new protomeme classify in old or new cluster (outlier)

Online K-Means clustering

#p2
#p2

If marker in
common with a
cluster member,
assign to that
cluster

If near a cluster,
assign to
nearest cluster

Otherwise it is
an outlier and a
candidate new
cluster

SALSA
56

Parallelization with Storm – Challenges

DAG organization of parallel workers: hard to synchronize cluster information

Protomeme
Generator

Spout

Synchronization
Coordinator

Bolt

ActiveMQ
Broker

…

Worker Process

Clustering Bolt

Clustering Bolt

…

Worker Process

Clustering Bolt

Clustering Bolt

…

tweet
stream

- Spout initiation by broadcasting INIT message
- Clustering bolt initiation by local counting
- Sync coordinator initiation by global counting

(of #protomemes)

Synchronization initiation methods:

Suffer from variation of processing speed

Parallelize Similarity Calculation

Calculate Cluster Centers

SALSA

• Speedup on up to 96 bolts on two clusters, Moe and Madrid

• Red curve is old online Kmeans algorithm; green and blue new algorithm

• Full Twitter – 1000 way parallelism (expected)

Parallel Tweet Clustering with Storm

SALSA

1. Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

2. Clouds are important for Big Data Analysis

3. Clouds are important for Education and Training

4. Interdisciplinary Applications and Technologies

5. Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS

6. Summary and Future

Cloud Computing

Outline

http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/
http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/plotviz/index.html
http://salsahpc.indiana.edu/plotviz/index.html

SALSA

Six Computation Paradigms for Data Analytics

(1) Map Only (4) Point to Point or

Map-Communication

(3) Iterative Map Reduce or

Map-Collective

(2) Classic

Map-Reduce

Input

map

reduce

Input

map

reduce

Iterations
Input

Output

map

Local

Graph

(5) Map-Streaming

maps brokers

Events

(6) Shared memory

Map-Communication

Map & Communication

Shared Memory

Pleasingly Parallel

₋ BLAST Analysis
₋ Local Machine

Learning
₋ Pleasingly Parallel

₋ High Energy Physics
(HEP) Histograms,

₋ Web search
₋ Recommender Engines

₋ Expectation Maximization
₋ Clustering
₋ Linear Algebra
₋ PageRank

₋ Classic MPI
₋ PDE Solvers and

Particle Dynamics
₋ Graph

₋ Streaming images from
Synchrotron sources,
Telescopes,
Internet of Things

₋ Difficult to parallelize
₋ asynchronous parallel

Graph

These 3 Paradigms are my Focus

SALSA

Comparison of current Data Analytics stack from Cloud and HPC infrastructure

J. Qiu, S. Jha, A. Luckow, G. Fox, TowardsHPC-ABDS: An Initial High-Performance Big Data Stack, proceedings of ACM 1st Big Data Interoperability Framework Workshop:
Building Robust Big Data ecosystem, NIST special publication, March 13-21, 2014.

My Focus

SALSA

The Models of Contemporary Big Data Tools

MapReduce ModelDAG Model Graph Model BSP/Collective Model

Storm

Twister
For

Iterations/
Learning

For
Streaming

For Query

S4

Hadoop

DryadLINQ Pig

Spark

Spark SQL

Spark Streaming

MRQL

Hive

Tez

Giraph

Hama

GraphLab

Harp

GraphX

HaLoop

Samza

Dryad

Stratosphere / Flink

Many of them have
fixed communication
patterns!

SALSA

Computation Characteristics of Big Data Tools

Tool
Computation

Model
Data Abstraction Communication Pattern

MPI [1] Loosely
Synchronous

N/A
Arrays and objects sending/receiving or collective
communication operations

Hadoop [2]
(Iterative)

MapReduce
Key-Values

Shuffle (disk-based) between Map stage and Reduce stage

Twister [3] Regroups (in-memory) between Map stage and Reduce stage,
“broadcast” and “aggregate”

Spark [4] RDD RDD Transformations on RDD, “broadcast and “aggregate”

Dryad [5]
DAG N/A

Communication is between two connected vertex processes in
the execution of DAG

Giraph [6]

Graph/BSP Graph

Graph-based message communication following Pregel model

Hama [7] Graph-based message communication following Pregel model
or direct message communication between workers

GraphLab (Dato)
[8, 9, 10]

Graph-based communication through caching and fetching of
ghost vertices and edges or the communication between
master vertex and its replicas in PowerGraph (GAS) model

GraphX [11] Graph-based communication supports Pregel model and
PowerGraph model

SALSA

1. Introduction: Big Data (Batch and Streaming), interdisciplinary, HPC and Clouds

2. Clouds are important for Big Data Analysis

3. Clouds are important for education: CloudMOOC

4. Interdisciplinary Applications and Technologies

5. Enhancing Commodity systems (Apache Big Data Stack) to HPC-ABDS

6. Summary and Future

Cloud Computing

Outline

http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/plotviz/index.html
http://salsahpc.indiana.edu/plotviz/index.html
http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/

SALSA

Progress in HPC-ABDS Runtime
• Standalone Twister: Iterative Execution (caching) and High performance communication extended

to first Map-Collective runtime

• HPC-ABDS Plugin Harp: adds HPC communication performance and rich data abstractions to
Hadoop

• Online Clustering with Storm integrates parallel and dataflow computing models

• Development of library of Collectives to use at Reduce phase

– Broadcast and Gather needed by current applications

– Discover other important ones (e.g. Allgather, Global-local sync, rotation)

– Implement efficiently on each platform (e.g. Amazon, Azure, Big Red II, Haswell Clusters)

• Clearer application fault tolerance model based on implicit synchronizations points at iteration end
points

• Runtime for data parallel languages with initial work on Apache Pig enhanced with Harp

• Integrate GPU support with Map-Collective model including deep learning

SALSA

Summary and Future

• Identification of Apache Big Data Software Stack and integration with High
Performance Computing Stack to give HPC-ABDS

– ABDS/Many Big Data applications/algorithms need HPC for performance

– HPC needs ABDS for rich software model productivity/sustainability

• Identification of Six Computation Models for HPC and Data Analytics

• Identification and Study of Map-Collective and Map-Streaming Model

• Integrate streaming and batch workflow as in social observatory – look at
Apache Beam and Google Cloud Dataflow

• Implement National Strategic Computing Initiative HPC-Big Data Convergence
with HPC-ABDS

• Continue Twister/ Twister4Azure to Harp conversion with more data analytics

– Apache Pig, Hadoop, Storm, and HBase enhancement in the form of plug-in

• Start HPC incubator project in Apache to bring HPC-ABDS to community

SALSA

Prof. David Crandall
Computer Vision

Prof. Filippo Menczer & CNETS
Complex Networks and Systems

Prof. Haixu Tang
Bioinformatics

Prof. David Wild
Cheminformatics

Bingjing Zhang Xiaoming Gao Stephen Wu

Thilina GunarathneJaliya Ekanayake Yuan Yang

Acknowledgements

SALSA HPC Group

School of Informatics and Computing

Indiana University

Prof. Raquel Hill
Security

SALSA

The Harp Library

• Harp is an implementation designed in a pluggable way to bring high performance to
the Apache Big Data Stack and bridge the differences between Hadoop ecosystem and
HPC system through a clear communication abstraction, which did not exist before in
the Hadoop ecosystem.

• Hadoop Plugin that targets Hadoop 2.2.0

• Provides implementation of the collective communication abstractions and
MapCollective programming model

• Project Link: http://salsaproj.indiana.edu/harp/index.html

• Source Code Link: https://github.com/jessezbj/harp-project

We built Map-Collective as a unified model to improve the performance and expressiveness of Big
Data tools. We ran Harp on K-means, Graph Layout, and Multidimensional Scaling algorithms with
realistic application datasets over 4096 cores on the IU BigRed II Supercomputer (Cray/Gemini) where
we have achieved linear speedup.

Extra slides

https://github.com/jessezbj/harp-project
https://github.com/jessezbj/harp-project

SALSA

Collective Communication Operations

Operation Name Data Abstraction Algorithm Time Complexity

broadcast
arrays, key-value
pairs & vertices

chain 𝒏𝜷

allgather
arrays, key-value
pairs & vertices

bucket 𝒑𝒏𝜷

allreduce
arrays, key-value
pairs

bi-directional
exchange

(𝒍𝒐𝒈𝟐𝒑)𝒏𝜷

regroup-allgather 2𝒏𝜷

regroup
arrays, key-value
pairs & vertices

point-to-point
direct sending

𝒏𝜷

send messages
to vertices

messages,
vertices

point-to-point
direct sending

𝒏𝜷

send edges to
vertices

edges, vertices
point-to-point
direct sending

𝒏𝜷

SALSA

K-means Clustering

On each node do

for t < iteration-num; t←t+1 do

for each p in points do

for each c in centroids do

Calculate the distance between p and c;

Add point p to the closest centroid c;

Allreduce the local point sum;

Compute the new centroids;

M M M M

allreduce centroids
0

20

40

60

80

100

120

140

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140

Sp
e

e
d

u
p

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

Number of Nodes

500M points 10K centroids Execution Time
5M points 1M centroids Execution Time
500M points 10K centroids Speedup
5M points 1M centroids Speedup

Test Environment: Big Red II

http://kb.iu.edu/data/bcqt.html

SALSA

Force-directed Graph Drawing Algorithm

On each node do

for t < iteration-num; t←t+1 do

Calculate repulsive forces and displacements;

Calculate attractive forces and displacements;

Move the points with displacements limited by

temperature;

Allgather the new coordination values of the

points;

T. Fruchterman, M. Reingold. “Graph Drawing by Force-Directed Placement”, Software Practice & Experience 21 (11), 1991.

M M M M

allgather positions of
vertices

0

20

40

60

80

100

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140

Sp
e

e
d

u
p

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

Number of Nodes
Execution Time Speedup

• Near linear

scalability Per-

iteration on

sequential R for 2012

network: 6035 seconds

SALSA

WDA-SMACOF

Y. Ruan et al. “A Robust and Scalable Solution for Interpolative Multidimensional Scaling With Weighting”. E-Science, 2013.

M M M M

allreduce the stress value

allgather and allreduce results in
the conjugate gradient process

0

1000

2000

3000

4000

0 20 40 60 80 100 120 140Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Number of Nodes
100K points 200K points
300K points 400K points

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Sp
e

e
d

u
p

Number of Nodes
100K points 200K points 300K points

On each node do

while current-temperature > min-temperature do

while stress-difference > threshold do

Calculate BC matrix;

Use conjugate gradient process to solve the

new coordination values;

(this is an iterative process which contains

allgather and allreduce operations)

Compute and allreduce the new stress value;

Calculate the difference of the stress

values;

Adjust the current temperature;

Scaling by Majorizing a Complicated Function (SMACOF) MDS algorithm

