Scalable High Performance Data Analytics

Harp and Harp-DAAL: Indiana University June 23, 2017

Judy Qiu

Intelligent Systems Engineering Department, Indiana University Email: xqiu@indiana.edu

Outline

Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

Optimization Methodologies

Results (configuration, benchmark)

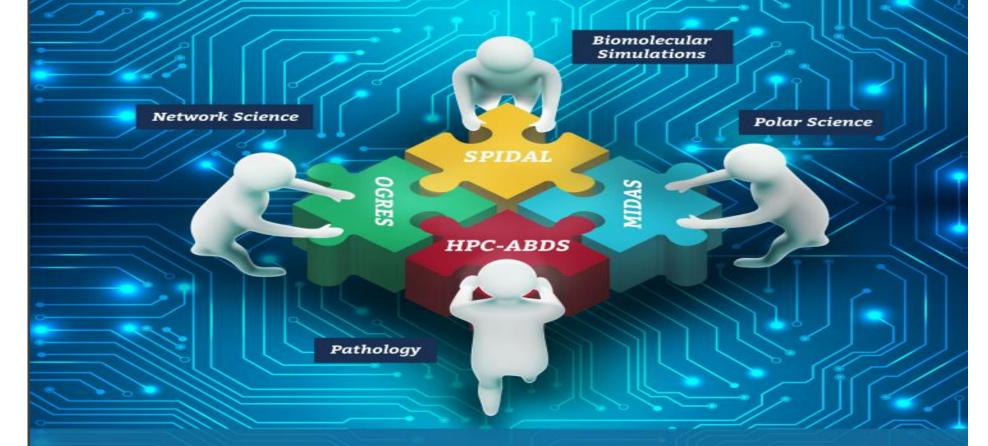
Code Optimization Highlights

5.

4.

3.

Conclusions and Future Work



DATANET: CIF21 DIBBS: Middleware and High Performance Analytics Libraries for Scalable Data Science Progress Report August 2016

Indiana University (Fox, Qiu, Crandall, von Laszewski), Rutgers (Jha), Virginia Tech (Marathe), Kansas (Paden), Stony Brook (Wang), Arizona State (Beckstein), Utah (Cheatham)

High Performance – Apache Big Data Stack

- **Big Data Application Analysis** [1] [2] identifies features of data intensive applications that need to be supported in software and represented in benchmarks. This analysis has been extended to support HPC-Simulations-Big Data convergence.
- The project is a collaboration between computer and domain scientists in application areas in Biomolecular Simulations, Network Science, Epidemiology, Computer Vision, Spatial Geographical Information Systems, Remote Sensing for Polar Science and Pathology Informatics.
- HPC-ABDS [3] as Cloud-HPC interoperable software with performance of HPC (High Performance Computing) and the rich functionality of the commodity Apache Big Data Stack was a bold idea developed.

- [2] Geoffrey Fox, Shantenu Jha, Judy Qiu, Andre Luckow, Towards an Understanding of Facets and Exemplars of Big Data Applications, accepted to the Twenty Years of Beowulf Workshop (Beowulf), 2014.
- [3] Judy Qiu, Shantenu Jha, Andre Luckow, Geoffrey Fox, Towards HPC-ABDS: An Initial High-Performance Big Data Stack, accepted to the proceedings of ACM 1st Big Data Interoperability Framework Workshop: Building Robust Big Data ecosystem, NIST special publication, 2014.

^[1] Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, Geoffrey Fox, A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures, Proceedings of the 3rd International Congress on Big Data Conference (IEEE BigData 2014).

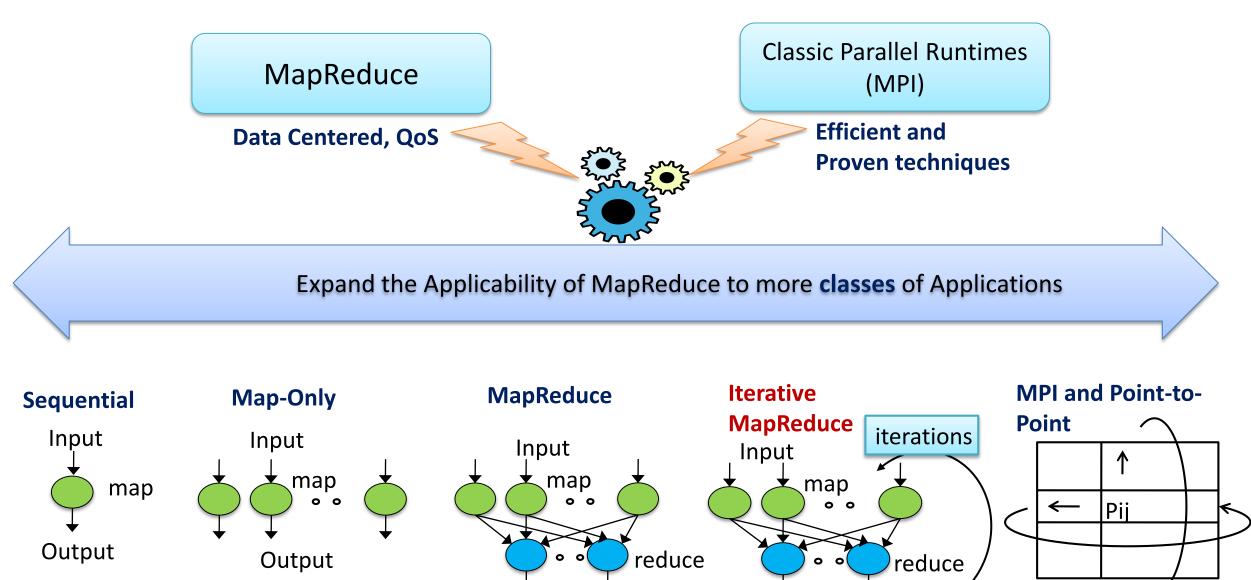
Scalable Parallel Interoperable Data Analytics Library

- MIDAS integrating middleware that links HPC and ABDS now has several components including an architecture for Big Data analytics, an integration of HPC in communication and scheduling on ABDS; it also has rules to get high performance Java scientific code.
- **SPIDAL** (Scalable Parallel Interoperable Data Analytics Library) now has 20 members with domain specific and core algorithms. SPIDAL **Java** runs as fast as **C++.**
- Designed and Proposed HPC Cloud as hardware-software infrastructure supporting
 - Big Data Big Simulation Convergence
 - Big Data Management via Apache Stack ABDS
 - Big Data Analytics using SPIDAL and other libraries

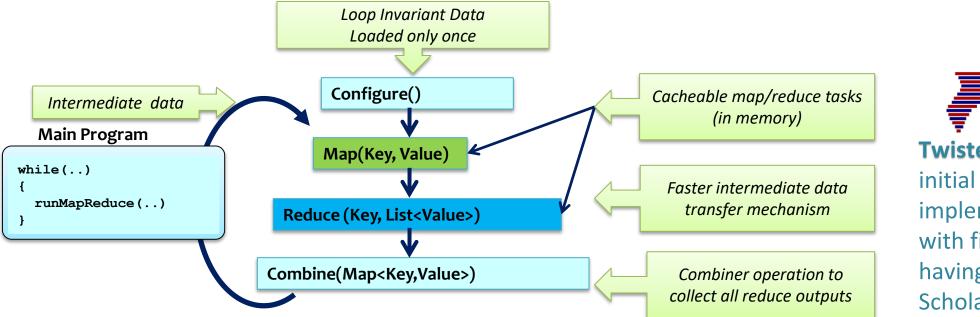
Motivation for faster and bigger problems

- Machine Learning (ML) Needs high performance
 - Big data and Big model
 - Iterative algorithms are fundamental in learning a non-trivial model
 - Model training and Hyper-parameter tuning steps run the iterative algorithms many times
- Architecture for Big Data analytics
 - to understand the algorithms through a **Model-Centric** view
 - to focus on the **computation and communication patterns** for optimizations
 - Trade-offs of efficiency and productivity
 - linear speedup with an increasing number of processors
 - easier to be parallelized on multicore or manycore computers

Motivation of Iterative MapReduce



Programming Model for Iterative MapReduce

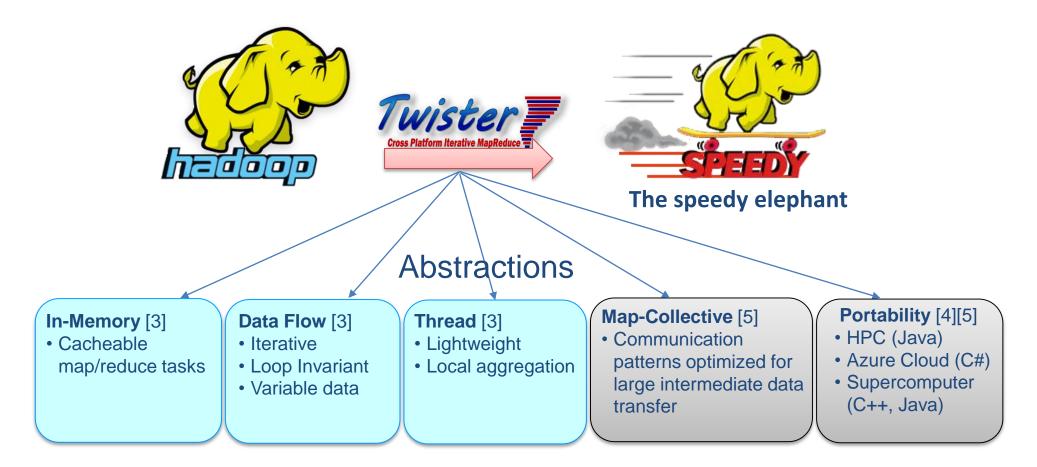


Iterative MapReduce is a programming model that applies a computation (e.g. Map task) or function repeatedly, using output from one iteration as the input of the next iteration. By using this pattern, it can solve complex computation problems by using apparently simple (user defined) functions.

- Distinction on loop invariant (e.g. input) data and variable (e.g. intermediate) data
- Cacheable map/reduce tasks (in-memory)
- Combine operation

Twister was our initial implementation with first paper having 854 Google Scholar citations

MapReduce Optimized for Iterative Computations



- [3] J. Ekanayake et. al, "Twister: A Runtime for Iterative MapReduce", in Proceedings of the 1st International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference.
- [4] T. Gunarathne et. al, "Portable Parallel Programming on Cloud and HPC: Scientific Applications of Twister4Azure", in Proceedings of 4th IEEE International Conference on Utility and Cloud Computing (UCC 2011).
- [5] B. Zhang et. al, "Harp: Collective Communication on Hadoop," in Proceedings of IEEE International Conference on Cloud Engineering (IC2E 2015).

The Concept of Harp Plug-in

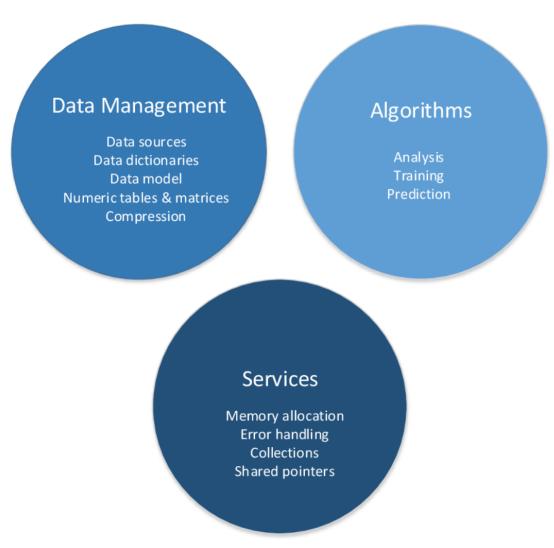
Parallelism Model

Architecture



Harp is an open-source project developed at Indiana University [6], it has:

- MPI-like **collective communication** operations that are highly optimized for big data problems.
- Harp has efficient and innovative computation models for different machine learning problems.



DAAL is an open-source project that provides:

- Algorithms Kernels to Users
 - Batch Mode (Single Node)
 - Distributed Mode (multi nodes)
 - Streaming Mode (single node)
- Data Management & APIs to Developers
 - Data structure, e.g., Table, Map, etc.
 - HPC Kernels and Tools: MKL, TBB, etc.
 - Hardware Support: Compiler

Intel Parallel Computing Center at Indiana University

Harp-DAAL enable faster Machine Learning Algorithms

with Hadoop Clusters on Multi-core and Many-core architectures

	ML Applicat	ions	Data Analysis				
	Harp Computation Models						
	Big Model	Big Tra Da		Big Model	big Data		
•	Hadoop and Harp Collective Communication						
	Intel DAAL Kernels: MF-SGD, K-Means, ALS						
	HPC Kernels: BLAS, MKL, TBB, OpenMP						
	HPC Hardware P	latforms: H	Haswell C	PU, KNL Xeon PHI			

- Bridge the gap between HPC hardware and Big data/Machine learning Software
- Support Iterative Computation, Collective Communication, Intel DAAL and native kernels
- Portable to new many-core architectures like Xeon Phi and run on Haswell and KNL clusters

Outline

Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

Optimization Methodologies

Results (configuration, benchmark)

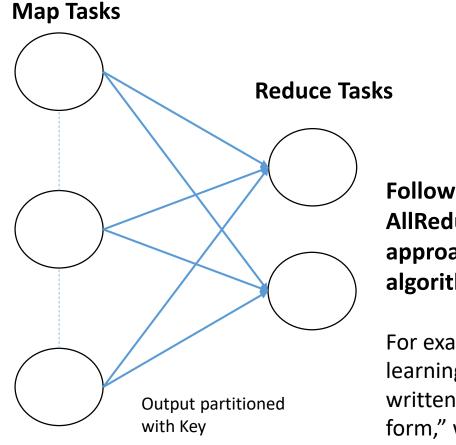
4. Code Optimization Highlights

5.

3.

Conclusions and Future Work

General Reduction in Hadoop, Spark, Flink



Follow by Broadcast for AllReduce which is a common approach to support iterative algorithms

For example, paper [7] 10 learning algorithms can be written in a certain "summation form," which allows them to be easily parallelized on multicore computers.

Comparison of Reductions:

- Separate Map and Reduce Tasks
- Switching tasks is expensive
- MPI only has one sets of tasks for map and reduce
- MPI achieves AllReduce by interleaving multiple binary trees
- MPI gets efficiency by using shared memory intra-node (e.g. multi-/manycore, GPU)

[7] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng and Kunle Olukotun, Map-Reduce for Machine Learning on Multicore, in NIPS 19 2007.

HPC Runtime versus ABDS distributed Computing Model on Data Analytics

Hadoop writes to disk and is slowest; Spark and Flink spawn many processes and do not support allreduce directly; MPI does in-place combined reduce/broadcast

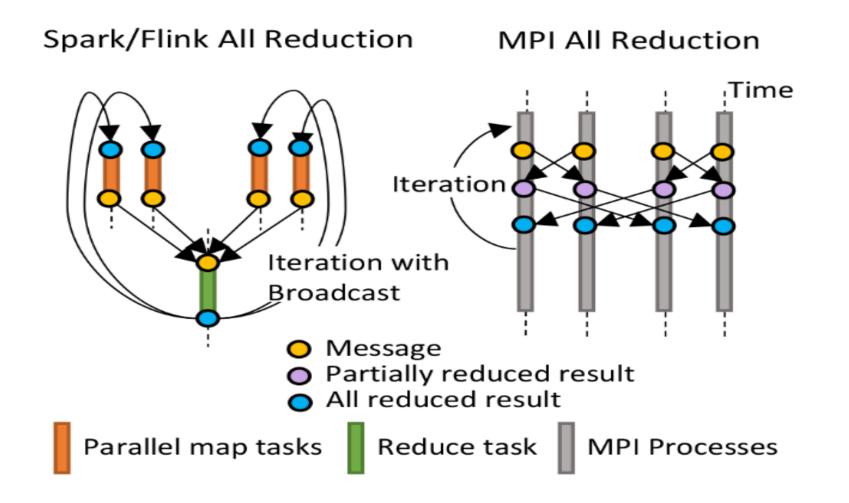
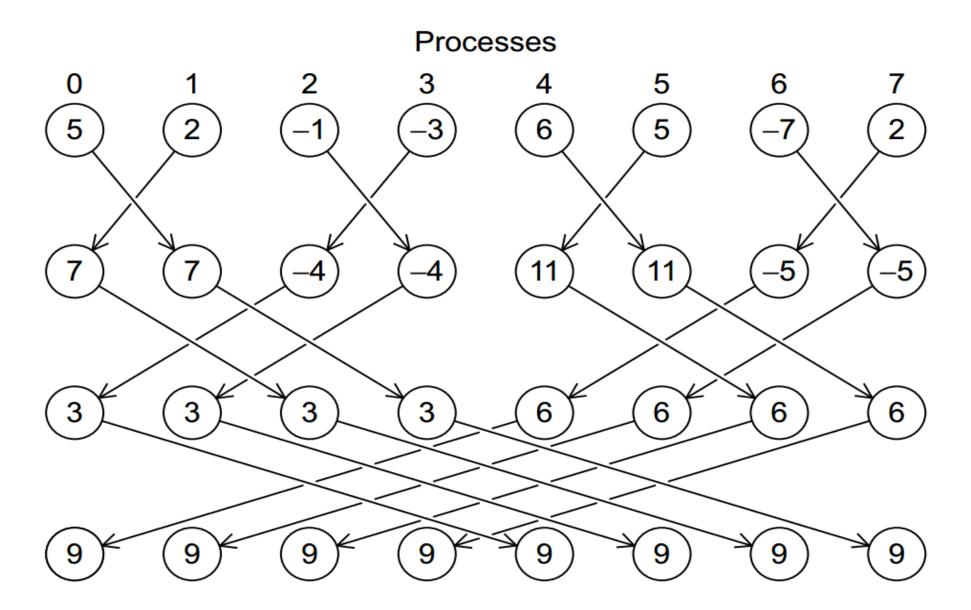


Illustration of In-Place AllReduce in MPI



Why Collective Communications for Big Data Processing?

- Collective Communication and Data Abstractions
 - Optimization of global model synchronization
 - ML algorithms: convergence vs. consistency
 - $_{\circ}~$ Model updates can be out of order
 - Hierarchical data abstractions and operations
- Map-Collective Programming Model
 - Extended from MapReduce model to support collective communications
 - BSP parallelism at Inter-node vs. Intra-node levels
- Harp Implementation
 - A plug-in to Hadoop

Harp APIs

Scheduler

- DynamicScheduler
- StaticScheduler

Collective

- MPI collective communication
 - broadcast
 - reduce
 - allgather
 - allreduce
- MapReduce "shuffle-reduce"
 - regroup with combine
- Graph & ML operations
 - "push" & "pull" model parameters
 - rotate global model parameters between workers

Event Driven

• getEvent

- waitEvent
- sendEvent

Collective Communication Operations

Operation Name	Algorithm	Time Complexity ^a
broadcast	chain	nβ
broadcast	minimum spanning tree	(log ₂ <i>p</i>) <i>nβ</i>
reduce	minimum spanning tree	(log ₂ <i>p</i>) <i>n</i> β
allgather	bucket	pn eta
allreduce	bi-directional exchange	(log ₂ <i>p</i>) <i>n</i> β
regroup	point-to-point	nβ
push & pull	point-to-point plus routing optimization	nβ
rotate	exchange data between neighbors on a ring topology	nβ

^aNote in "time complexity", p is the number of processes, n is the number of input data items per worker, β is the per data item transmission time, communication startup time is neglected and the time complexity of the "point-to-point" based algorithms are estimated regardless of potential network conflicts.

Taxonomy for Machine Learning Algorithms

Task Level	Classification	Clusteri	ing Regress	ion Recom	mendation	Structo		ension eduction
Model								
Structure	General Linear Model	Kernel Method		Decision Tree	Factorizat Machin	100 M (0.00	Braphical Model	Neural Networks
Level								
Solver	SVD,PCA,LR	,QR,	GD,SGD,L CCD.		EM,VB	04.34 (C117)	Gibbs Samp tropolis-Ha	
Level	Linear Algeb Kernel	ora	Numerio Optimiza		Expectation Aximization	Markov Chain Monte Carlo		

Optimization and related issues

- Task level only can't capture the traits of computation
- Model is the key for iterative algorithms. The structure (e.g. vectors, matrix, tree, matrices) and size are critical for performance
- Solver has specific computation and communication pattern

We investigate different computation and communication patterns of important ml algorithms

Parallel Machine Learning Application Implementation Guidelines

Application

• Latent Dirichlet Allocation, Matrix Factorization, Linear Regression...

Algorithm

• Expectation-Maximization, Gradient Optimization, Markov Chain Monte Carlo...

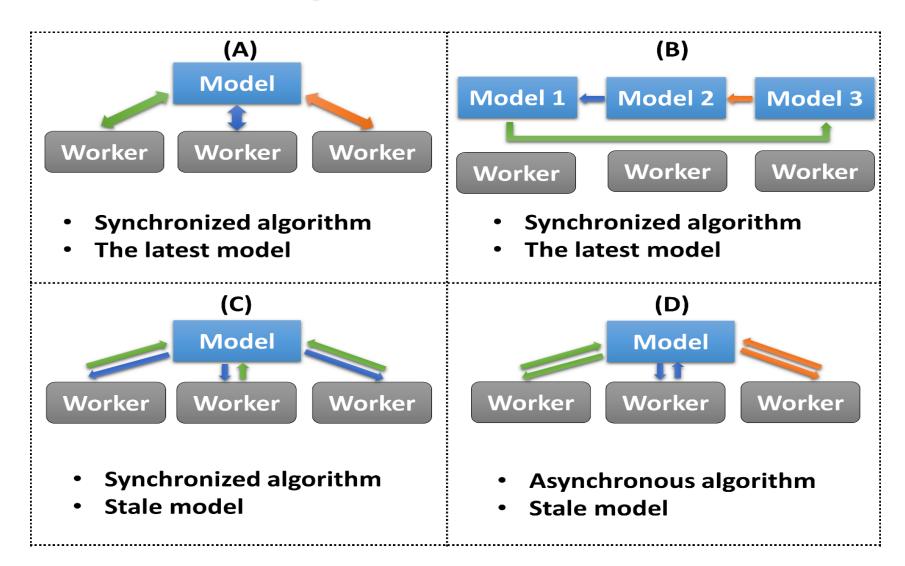
Computation Model

• Locking, Rotation, Allreduce, Asynchronous

System Optimization

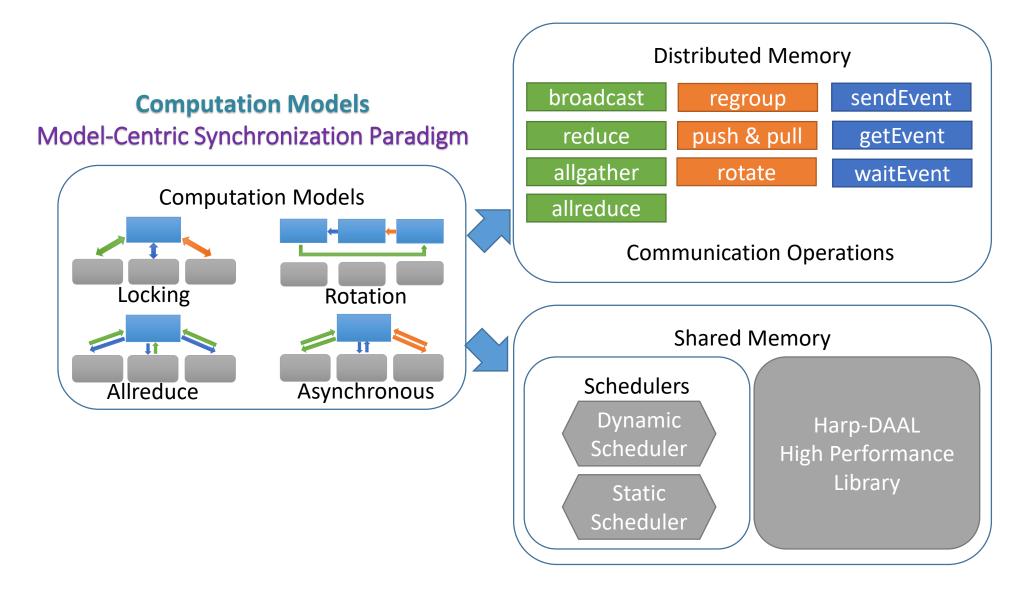
- Collective Communication Operations
- Load Balancing on Computation and Communication
- Per-Thread Implementation

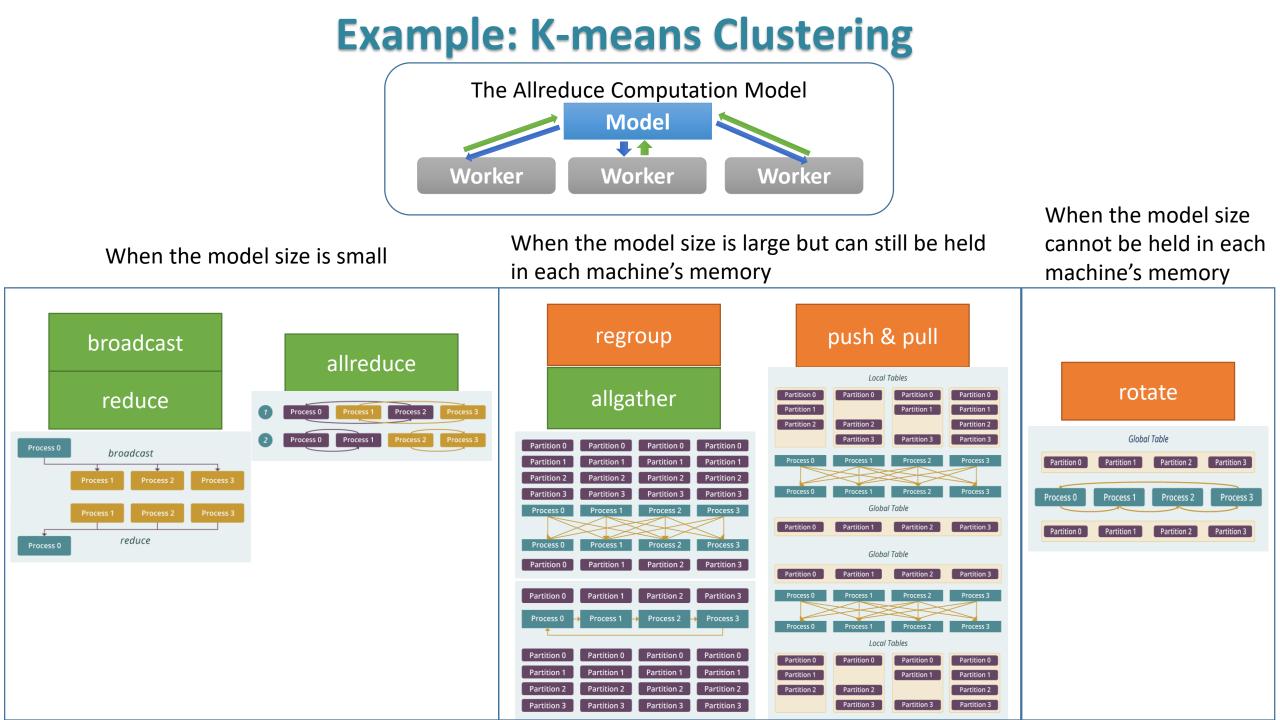
Computation Models



[8] B. Zhang, B. Peng, and J. Qiu, "Model-centric computation abstractions in machine learning applications," in Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, BeyondMR@SIGMOD 2016

Harp Solution to Big Data Problems





Outline

Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

Optimization Methodologies

Results (configuration, benchmark)

3.

Code Optimization Highlights

Conclusions and Future Work

Hardware specifications

Table I SPECIFICATION OF XEON PHI 7250 KNL

Cores		Memory		Node Spec		Misc Spec	
Cores	68	DDR4	190 GB	Network	Omni-path	Instruction Set	64 bit
Base Freq	1.4GHz	MCDRAM	16 GB	Peak Port Band	100 Gbps	IS Extension	AVX512
L1 Cache	2 MB	DDR4-Band	90 Gbps	Socket	1	Max Threads	271
L2 Cache	34 MB	MCDRAM-Band	400 Gbps	Disk	1 TB	VPUs	136

Table IISpecification of Haswell Xeon E5 2699 v3

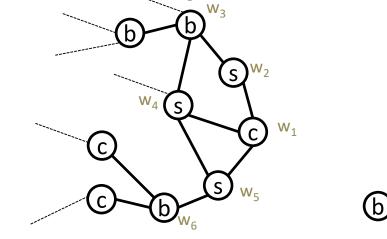
Cores		Memory		Node Spec		Misc Spec	
Cores Base Freq	36 2.3GHz	DDR4 HBM		Network Peak Port Band		Instruction Set IS Extension	64 bit AVX2
1		DDR4-Band			2	Max Threads	72
L3 Cache	45 MB	HBM-Band	none	Disk	8 TB	VPUs	168

All scalability tests run on the above Haswell (128 node) and KNL (64 node) clusters.

Harp-SAhad SubGraph Mining

VT and IU collaborative work

Relational sub-graph isomorphism problem: find sub-graphs in G which are isomorphic to the given template T. **SAhad** is a challenging graph application that is both data intensive and communication intensive. **Harp-SAhad** is an implementation for sub-graph counting problem based on SAHAD algorithm and Harp framework.



Network	No. Of Nodes (in million)	No. Of Edges (in million)	Size (MB)	
Web- google	0.9	4.3	65	
Miami	2.1	51.2	740	
Nyc	18	480	7856	

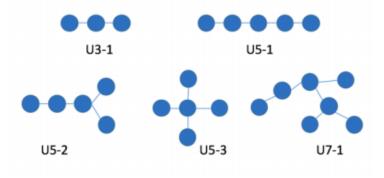


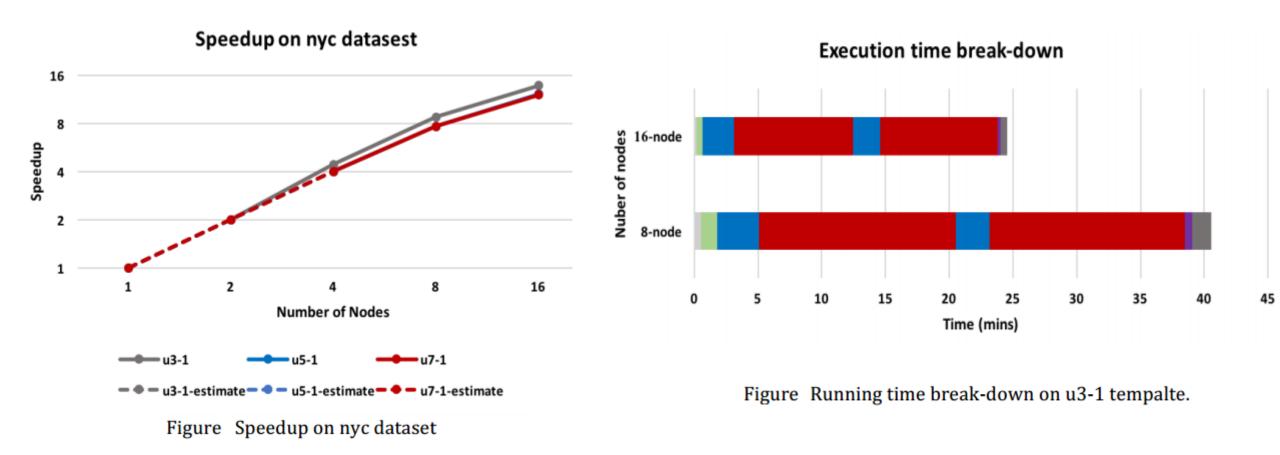
Table IV Networks of Graph Applications

Figure Sub-graph Templates

[9] Zhao Z, Wang G, Butt A, Khan M, Kumar VS Anil, Marathe M. SAHad: Subgraph analysis in massive networks using hadoop. Shanghai, China: IEEE Computer Society; 2012:390–401. Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

Harp-SAHad Performance Results

VT and IU collaborative work



Intel Parallel Computing Center at Indiana University

intel

Test Plan and Datasets

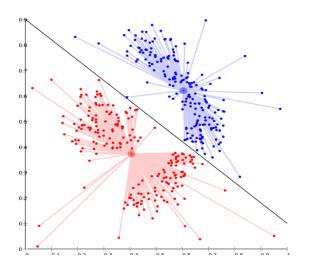
Table III DATASETS USED IN K-MEANS, MF-SGD, AND ALS

Dataset	Kmeans-Single	Kmeans-Multi	Movielens	Netflix	Yahoomusic	Enwiki	Hugewiki
#Training	5000000	20000000	9301274	99072112	252800275	609700674	3074875354
#Test	none	none	698780	1408395	4003960	12437156	365998592
#centroid	10000	100000	none	none	none	none	none
Dim	100	100	40	40	100	100	1000
λ	none	none	0.05	0.05	1	0.01	0.01
γ	none	none	0.003	0.002	0.0001	0.001	0.004

Intel Parallel Computing Center at Indiana University

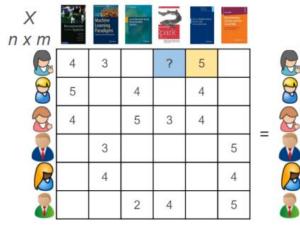
Harp-DAAL Applications

Harp-DAAL-Kmeans



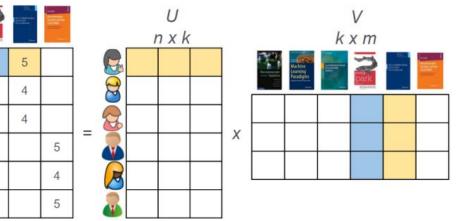
- Clustering
- Vectorized computation
- Small model data
- Regular Memory Access

Harp-DAAL-SGD



Harp-DAAL-ALS

inte



- Matrix Factorization
- Huge model data
- Random Memory Access
- Easy to scale up
- Hard to parallelize

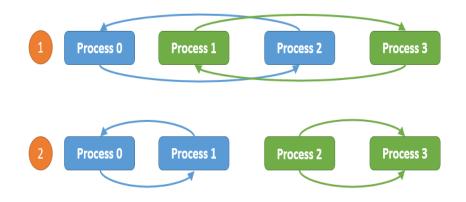
- Matrix Factorization
- Huge model data
- Regular Memory Access
- Easy to parallelize
- Hard to scale up

[10] Langshi Chen, Bo Peng, Bingjing Zhang, Tony Liu, Yiming Zou, Lei Jiang, Robert Henschel, Craig Stewart, Zhang Zhang, Emily Mccallum, Zahniser Tom, Omer Jon, Judy Qiu, Benchmarking Harp-DAAL: High Performance Hadoop on KNL Clusters, in the Proceedings of the International Conference on Cloud Computing (CLOUD 2017), June 25-30, 2017.

Computation models for K-means

Harp-DAAL-Kmeans

• Inter-node: Allreduce, Easy to implement, efficient when model data is not large



 Intra-node: Shared Memory, matrixmatrix operations, xGemm: aggregate vector-vector distance computation into matrix-matrix multiplication, higher computation intensity (BLAS-3)

1: procedure

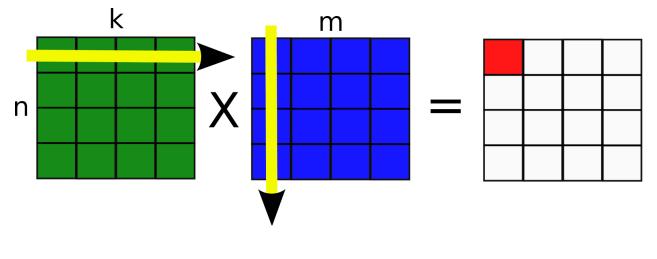
- 2: Given $(x^1, x^2, \dots, x^m), \forall i, x^i \in \mathbb{R}^n$
- 3: Initialize centroids randomly: $\mu_1, \mu_2, \ldots, \mu_k \in \mathbb{R}^n$
- 4: Repeat until convergence

5:
$$\forall i, c^i := argmin_j \|x^i - \mu_j\|^2$$

6:
$$\forall j, \mu_j := \frac{\sum_{i=1}^m 1\{c^i = j\}x^i}{\sum_{i=1}^m 1\{c^i = j\}}$$

7: End Repeat

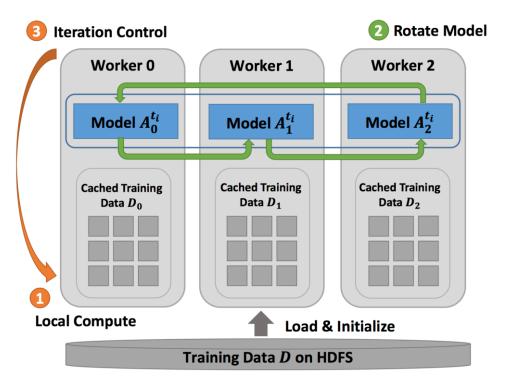
8: end procedure



 $C \leftarrow \alpha op(A)op(B) + \beta C$

Computation models for MF-SGD

- Inter-node: Rotation
- Intra-node: Asynchronous



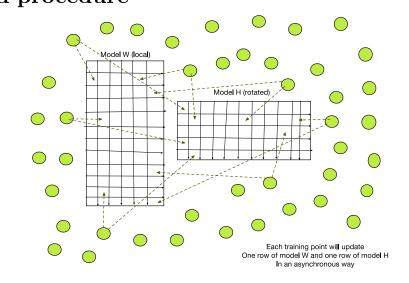
Rotation: Efficent when the mode data Is large, good scalability

procedure

 $R \in \mathbb{R}^{m \times n}, P \in \mathbb{R}^{k \times m}$, and $Q \in \mathbb{R}^{k \times n}$ while true do select randomly a point r_{ij} from R $e_{ij} = r_{ij} - p_i^T q_j$

 $p_{i} \leftarrow p_{i} + \gamma(e_{ij}q_{j} - \lambda_{P}p_{i})$ $q_{j} \leftarrow q_{j} + \gamma(e_{ij}p_{i} - \lambda_{Q}q_{j})$ if P, Q converged then Exit While loop end if end while

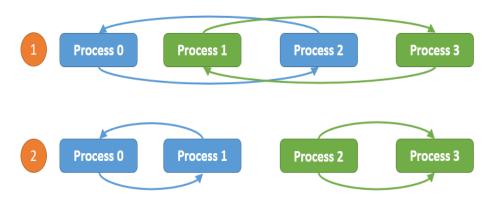
end procedure



Asynchronous: Random access to model data Good for thread-level workload balance.

Computation Models for ALS

• Inter-node: Allreduce

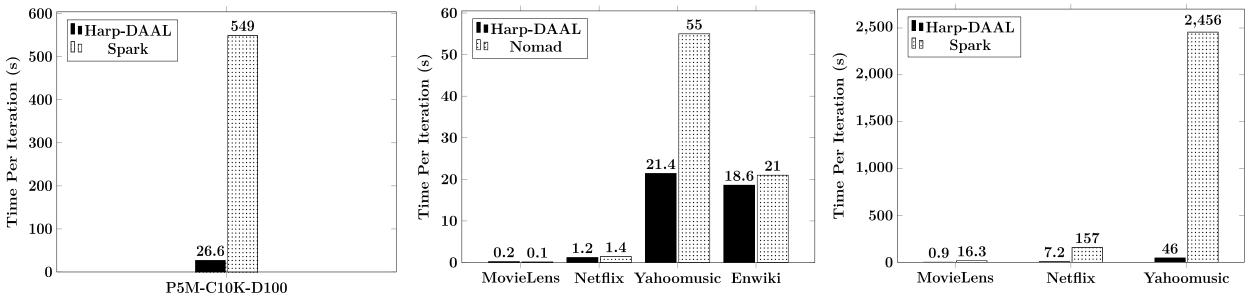


Intra-node: Shared Memory, Matrix operations xSyrk: symmetric rank-k update

 $C \leftarrow \alpha A A^T + \beta C$ $A \leftarrow \alpha x x^T + A$

procedure Load R, R^T Initialize X, Yrepeat for i = 1, 2, ..., n do $V_i = Y_{I_i} R^T(i, I_i)$ $A_i = Y_{I_i} Y_{I_i}^T + \lambda n_{x_i} E$ $x_i = A_i^{-1} V_i$ end for for j = 1, 2, ..., m do $U_j = X_{I_j} R(I_j, j)$ $B_j = X_{I_j} X_{I_i}^T + \lambda n_{m_j} E$ $y_j = B_j^{-1} U_j$ end for until convergence end procedure

Performance on KNL Single Node



Harp-DAAL-Kmeans vs. Spark-Kmeans:

~ 20x speedup

- 1) Harp-DAAL-Kmeans invokes MKL matrix operation kernels at low level
- Matrix data stored in contiguous memory space, leading to regular access pattern and data locality

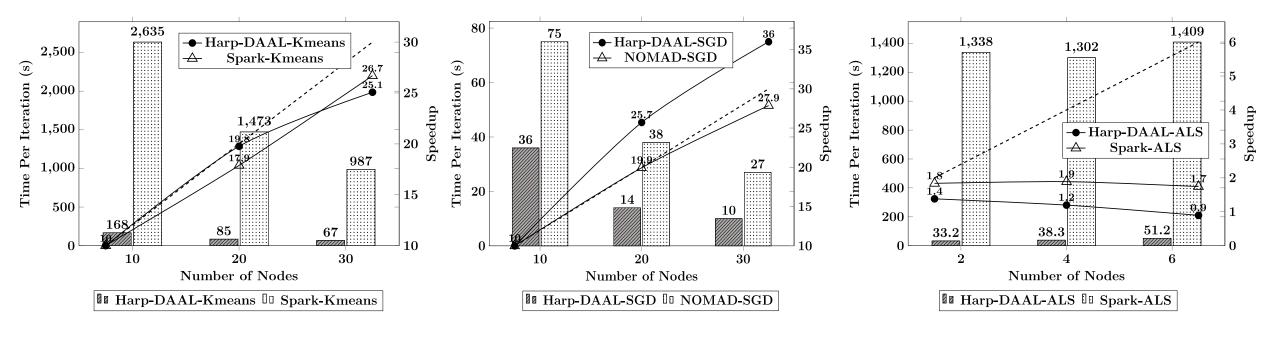
- 1) Small dataset (MovieLens, Netflix): comparable perf
- Large dataset (Yahoomusic, Enwiki): *1.1x to 2.5x*, depending on data distribution of matrices

20x to 50x speedup

- 1) Harp-DAAL-ALS invokes MKL at low level
- 2) Regular memory access, data locality in matrix operations

Harp-DAAL has much better single node performance than Java solution (Spark-Kmeans, Spark-ALS) and comparable performance to state-of-arts C++ solution (NOMAD-SGD)

Performance on KNL Multi-Nodes



Harp-DAAL-Kmeans:

15x to 20x speedup over Spark-Kmeans

- 1) Fast single node performance
- 2) Near-linear strong scalability from 10 to 20 nodes
- 3) After 20 nodes, insufficient computation workload leads to some loss of scalability

Harp-DAAL-SGD:

2x to 2.5x speedup over NOMAD-SGD

- 1) Comparable or fast single node performance
- Collective communication operations in Harp-DAAL outperform point-to-point MPI communication in NOMAD

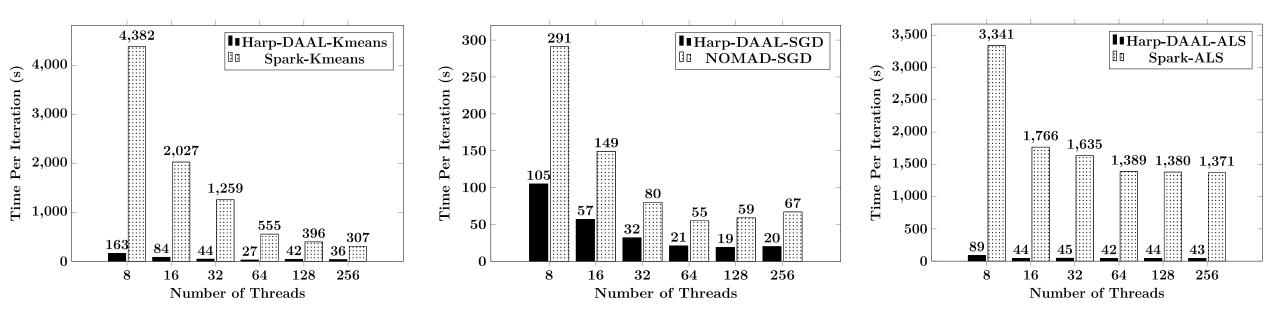
Harp-DAAL-ALS:

25x to 40x speedup over Spark-ALS

- 1) Fast single node performance
- 2) ALS algorithm is not scalable (high communication ratio)

Harp-DAAL combines the benefits from local computation (DAAL kernels) and communication operations (Harp), which is much better than Spark solution and comparable to MPI solution.

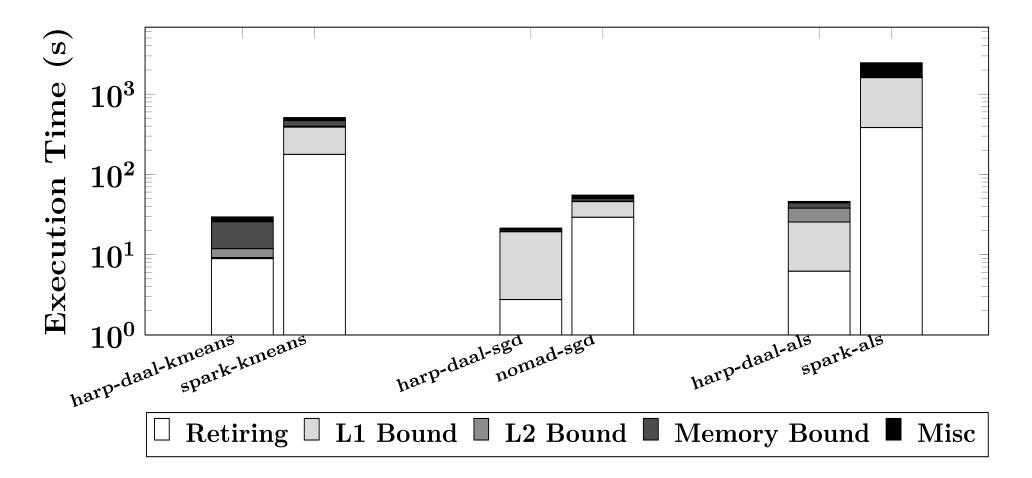
Breakdown of Intra-node Performance



Thread scalability:

- Harp-DAAL best threads number: 64 (K-means, ALS) and 128 (MF-SGD), more than 128 threads no performance gain
 - $\,\circ\,$ communications between cores intensify
 - $\circ\,$ cache capacity per thread also drops significantly
- Spark best threads number 256, because Spark could not fully Utilize AVX-512 VPUs
- NOMAD-SGD could use AVX VPU, thus has 64 its best thread as that of Harp-DAAL-SGD

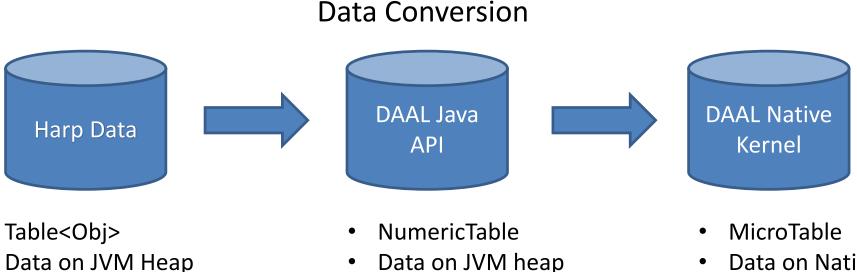
Breakdown of Intra-node Performance



Spark-Kmeans and Spark-ALS dominated by Computation (retiring), no AVX-512 to reduce retiring Instructions, Harp-DAAL improves L1 cache bandwidth utilization due to AVX-512

Intel Parallel Computing Center at Indiana University

Code Optimization Highlights



۰

Data on Native Memory

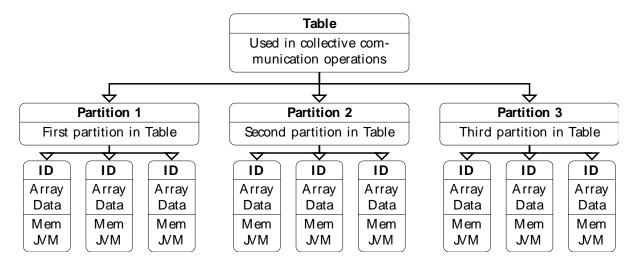
 Data on Native Memory A single DirectByteBuffer has a size limite of 2 GB

Inte

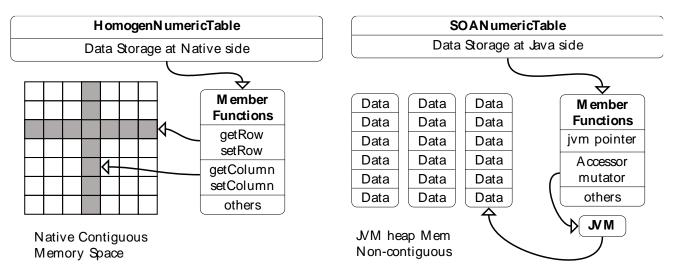
Two ways to store data using DAAL Java API

- Keep Data on JVM heap
 - no contiguous memory access requirement
 - Small size DirectByteBuffer and parallel copy (OpenMP)
- Keep Data on Native Memory
 - o contiguous memory access requirement
 - Large size DirectByteBuffer and bulk copy

Data Structures of Harp & Intel's DAAL



Harp Table consists of Partitions



DAAL Table has different types of Data storage

Table<Obj> in Harp has a three-level data Hierarchy

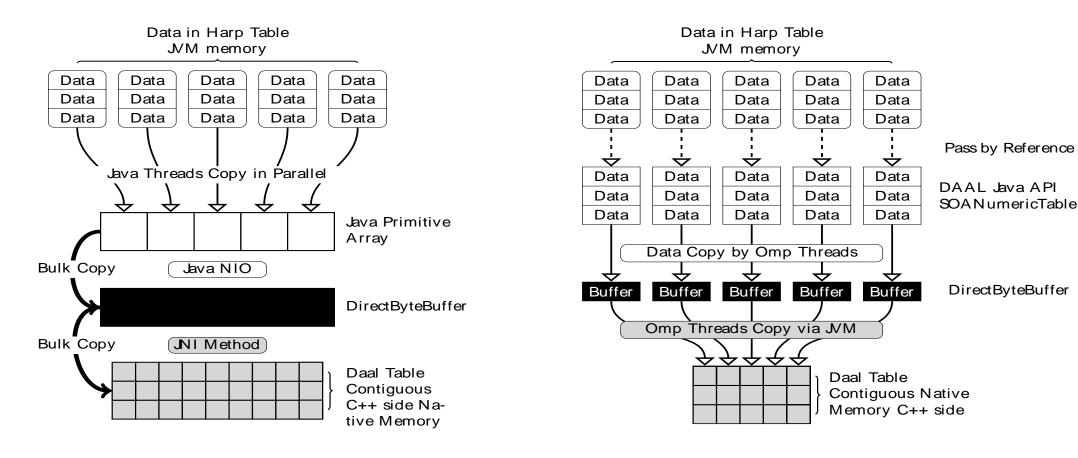
- Table: consists of partitions
- Partition: partition id, container
- Data container: wrap up Java objs, primitive arrays

Data in different partitions, non-contiguous in memory

NumericTable in DAAL stores data either in Contiguous memory space (native side) or non-contiguous arrays (Java heap side)

Data in contiguous memory space favors matrix operations with regular memory accesses.

Two Types of Data Conversion



JavaBulkCopy:

Dataflow: Harp Table<Obj> -----Java primitive array ---- DiretByteBuffer ----NumericTable (DAAL) Pros: Simplicity in implementation Cons: high demand of DirectByteBuffer size

NativeDiscreteCopy:

Dataflow: Harp Table<Obj> ----DAAL Java API (SOANumericTable) ---- DirectByteBuffer ---- DAAL native memory Pros: Efficiency in parallel data copy Cons: Hard to implement at low-level kernels

Outline

Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

Optimization Methodologies

Results (configuration, benchmark)

Code Optimization Highlights

3.

4.

Conclusions and Future Work

Conclusions

- Identification of Apache Big Data Software Stack and integration with High Performance Computing Stack to give HPC-ABDS
 - ABDS (Many Big Data applications/algorithms need HPC for performance)
 - HPC (needs software model productivity/sustainability)
- Identification of **4 computation models** for machine learning applications
 - Locking, Rotation, Allreduce, Asynchroneous
- HPC-ABDS: High performance Hadoop (with Harp-DAAL) on KNL and Haswell clusters

Hadoop/Harp-DAAL: Prototype and Production Code

DSC-SPIDAL / harp		O Unwatch →	13 🛧 Star	1 V Fork 6
<> Code () Issues 1 () Pull requests 2 () Project	s o 🗉 Wiki 🧄 Pulse	III Graphs 🔅 Settings		
Branch: master - harp-daal-app / src / edu / iu /		Create new file	Upload files	Find file History
Chen add codes for harp-daal-als			Latest commi	it 158f8e9 5 days ago
benchmark	re-structure the codes			2 months ago
aal daal	add daal_kmeans codes			2 months ago
daal_als	add codes for harp-daal-als			5 days ago
daal_kmeans/regroupallgather	add daal_kmeans codes			2 months ago
aal_sgd	re-structure the codes			2 months ago
dymoro	re-structure the codes			2 months ago
illeformat	re-structure the codes			2 months ago
kmeans	re-structure the codes			2 months ago
🖿 train	re-structure the codes			2 months ago
wdamds	re-structure the codes			2 months ago

Source codes became available on Github at <u>Harp-DAAL project</u> in February, 2017.

- Harp-DAAL follows the same standard of DAAL's original codes
- Six Applications
 - Harp-DAAL Kmeans
 - Harp-DAAL MF-SGD
 - Harp-DAAL MF-ALS
 - Harp-DAAL SVD
 - Harp-DAAL PCA
 - Harp-DAAL Neural Networks

Scalable Algorithms implemented using Harp

Algorithm	Category	Applications	Features	Computation Model	Collective Communication
K-means	Clustering	Most scientific domain	Vectors	AllReduce	allreduce, regroup+allgather, broadcast+reduce, push+pull
				Rotation	rotate
Multi-class Logistic Regression	Classification	Most scientific domain	Vectors, words	Rotation	regroup, rotate, allgather
Random Forests	Classification	Most scientific domain	Vectors	AllReduce	allreduce
Support Vector Machine	Classification, Regression	Most scientific domain	Vectors	AllReduce	allgather
Neural Networks	Classification	Image processing, voice recognition	Vectors	AllReduce	allreduce
Latent Dirichlet Allocation	Structure learning (Latent topic model)	Text mining, Bioinformatics, Image Processing	Sparse vectors; Bag of words	Rotation	rotate, allreduce
Matrix Factorization	Structure learning (Matrix completion)	Recommender system	Irregular sparse Matrix; Dense model vectors	Rotation	rotate
Multi-Dimensional Scaling	Dimension reduction	Visualization and nonlinear identification of principal components	Vectors	AllReduce	allgarther, allreduce
Subgraph Mining	Graph	Social network analysis, data mining, fraud detection, chemical informatics, bioinformatics	Graph, subgraph	Rotation	rotate
Force-Directed Graph Drawing	Graph	Social media community detection and visualization	Graph	AllReduce	allgarther, allreduce

Future Work

- Harp-DAAL machine learning and data analysis applications with optimal performance
- Online Clustering with Harp or Storm integrates parallel and dataflow computing models
- Start HPC Cloud incubator project in Apache to bring HPC-ABDS to community

Plan A (completed)

Development of Harp-DAAL applications. DAAL provides batch or distributed C/C++ codes and Java interface for the following applications:

Candidates with Distributed codes

Principal Component Analysis (PCA)

https://software.intel.com/en-us/node/564625

- Singular Value Decomposition (SVD) https://software.intel.com/en-us/node/564635
- Neural Networks

https://software.intel.com/en-us/node/681960

Plan B (to do)

A survey and benchmarking work for Machine learning algorithms. We run benchmark algorithms from state-of-arts machine learning libraries and evaluate their performance on different platforms (Xeon, Xeon Phi, and GPU).

Candidates with Batch codes

Cholesky Decomposition

https://software.intel.com/en-us/node/564631

• QR Decomposition

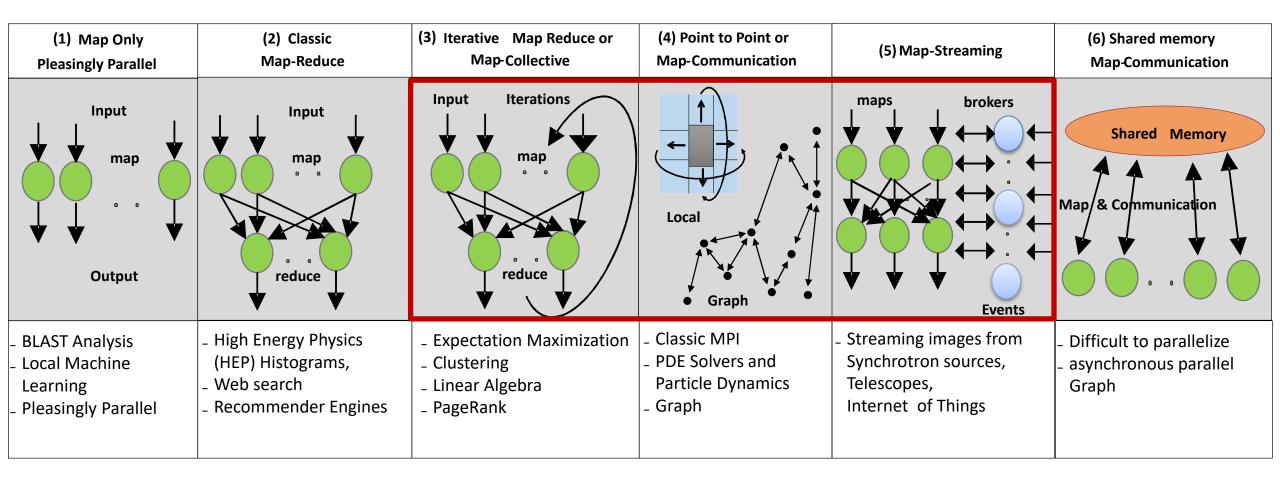
https://software.intel.com/en-us/node/564640

- Expectation-Maximization
 https://software.intel.com/en-us/node/564649
- Multivariate Outlier Detection https://software.intel.com/en-us/node/564653
- Univariate Outlier Detection https://software.intel.com/en-us/node/564657
- Association Rules

https://software.intel.com/en-us/node/564661

• Support Vector Machine Classifier (SVM) https://software.intel.com/en-us/node/564708

Six Computation Paradigms for Data Analytics



These 3 Paradigms are our Focus –

Acknowledgements

We gratefully acknowledge support from NSF, IU and Intel Parallel Computing Center (IPCC) Grant.

Langshi Cheng Bingjing Zhang Bo Peng Kannan Govindarajan Supun Kamburugamuve Yiming Zhou Ethan Li Mihai Avram Vibhatha Abeykoon

> Intelligent Systems Engineering School of Informatics and Computing Indiana University

