
Scalable High Performance Data Analytics

Harp and Harp-DAAL: Indiana University
June 23, 2017

Judy Qiu

Intelligent Systems Engineering Department, Indiana University
Email: xqiu@indiana.edu

1. Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

2. Optimization Methodologies

3. Results (configuration, benchmark)

4. Code Optimization Highlights

5. Conclusions and Future Work

Outline

High Performance – Apache Big Data Stack

• Big Data Application Analysis [1] [2] identifies features of data intensive applications that
need to be supported in software and represented in benchmarks. This analysis has been
extended to support HPC-Simulations-Big Data convergence.

• The project is a collaboration between computer and domain scientists in application areas
in Biomolecular Simulations, Network Science, Epidemiology, Computer Vision, Spatial
Geographical Information Systems, Remote Sensing for Polar Science and Pathology
Informatics.

• HPC-ABDS [3] as Cloud-HPC interoperable software with performance of HPC (High
Performance Computing) and the rich functionality of the commodity Apache Big Data
Stack was a bold idea developed.

[1] Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, Geoffrey Fox, A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures,
Proceedings of the 3rd International Congress on Big Data Conference (IEEE BigData 2014).

[2] Geoffrey Fox, Shantenu Jha, Judy Qiu, Andre Luckow, Towards an Understanding of Facets and Exemplars of Big Data Applications, accepted to the Twenty
Years of Beowulf Workshop (Beowulf), 2014.

[3] Judy Qiu, Shantenu Jha, Andre Luckow, Geoffrey Fox, Towards HPC-ABDS: An Initial High-Performance Big Data Stack, accepted to the proceedings of ACM 1st
Big Data Interoperability Framework Workshop: Building Robust Big Data ecosystem, NIST special publication, 2014.

Scalable Parallel Interoperable Data Analytics Library

• MIDAS integrating middleware that links HPC and ABDS now has several components
including an architecture for Big Data analytics, an integration of HPC in
communication and scheduling on ABDS; it also has rules to get high performance Java
scientific code.

• SPIDAL (Scalable Parallel Interoperable Data Analytics Library) now has 20 members
with domain specific and core algorithms. SPIDAL Java runs as fast as C++.

• Designed and Proposed HPC Cloud as hardware-software infrastructure supporting

– Big Data Big Simulation Convergence

– Big Data Management via Apache Stack ABDS

– Big Data Analytics using SPIDAL and other libraries

Motivation for faster and bigger problems

• Machine Learning (ML) Needs high performance

– Big data and Big model

– Iterative algorithms are fundamental in learning a non-trivial model

– Model training and Hyper-parameter tuning steps run the iterative
algorithms many times

• Architecture for Big Data analytics

– to understand the algorithms through a Model-Centric view

– to focus on the computation and communication patterns for optimizations

– Trade-offs of efficiency and productivity

• linear speedup with an increasing number of processors

• easier to be parallelized on multicore or manycore computers

Motivation of Iterative MapReduce

Input

Output

map

Map-Only

Input

map

reduce

MapReduce

Input

map

reduce

iterations

Iterative
MapReduce

Pij

MPI and Point-to-
Point

Sequential

Input

Output

map

MapReduce
Classic Parallel Runtimes

(MPI)

Data Centered, QoS Efficient and
Proven techniques

Expand the Applicability of MapReduce to more classes of Applications

Reduce (Key, List<Value>)

Map(Key, Value)

Loop Invariant Data
Loaded only once

Faster intermediate data
transfer mechanism

Combiner operation to
collect all reduce outputs

Cacheable map/reduce tasks
(in memory)

Configure()

Combine(Map<Key,Value>)

Programming Model for Iterative MapReduce

• Distinction on loop invariant (e.g. input)
data and variable (e.g. intermediate) data

• Cacheable map/reduce tasks (in-memory)
• Combine operation

Main Program

while(..)

{

runMapReduce(..)

}

Intermediate data

Iterative MapReduce is a programming
model that applies a computation (e.g. Map
task) or function repeatedly, using output
from one iteration as the input of the next
iteration. By using this pattern, it can solve
complex computation problems by using
apparently simple (user defined) functions.

Twister was our
initial
implementation
with first paper
having 854 Google
Scholar citations

MapReduce Optimized for Iterative Computations

The speedy elephant

In-Memory [3]

• Cacheable

map/reduce tasks

Data Flow [3]

• Iterative

• Loop Invariant

• Variable data

Thread [3]

• Lightweight

• Local aggregation

Map-Collective [5]

• Communication

patterns optimized for

large intermediate data

transfer

Portability [4][5]

• HPC (Java)

• Azure Cloud (C#)

• Supercomputer

(C++, Java)

Abstractions

[3] J. Ekanayake et. al, “Twister: A Runtime for Iterative MapReduce”, in Proceedings of the 1st International Workshop on MapReduce and its
Applications of ACM HPDC 2010 conference.

[4] T. Gunarathne et. al, “Portable Parallel Programming on Cloud and HPC: Scientific Applications of Twister4Azure”, in Proceedings of 4th IEEE
International Conference on Utility and Cloud Computing (UCC 2011).

[5] B. Zhang et. al, “Harp: Collective Communication on Hadoop,” in Proceedings of IEEE International Conference on Cloud Engineering (IC2E 2015).

The Concept of Harp Plug-in

Parallelism Model Architecture

Shuffle

M M M M

Collective Communication

M M M M

R R

MapCollective ModelMapReduce Model

YARN

MapReduce V2

Harp

MapReduce
Applications

MapCollective
ApplicationsApplication

Framework

Resource
Manager

Harp is an open-source project developed at Indiana University [6], it has:
• MPI-like collective communication operations that are highly optimized for big data problems.
• Harp has efficient and innovative computation models for different machine learning problems.

[6] Harp project. Available at https://dsc-spidal.github.io/harp

DAAL is an open-source project that provides:

• Algorithms Kernels to Users
• Batch Mode (Single Node)

• Distributed Mode (multi nodes)

• Streaming Mode (single node)

• Data Management & APIs to Developers
• Data structure, e.g., Table, Map, etc.

• HPC Kernels and Tools: MKL, TBB, etc.

• Hardware Support: Compiler

Harp-DAAL enable faster Machine Learning Algorithms
with Hadoop Clusters on Multi-core and Many-core architectures

• Bridge the gap between HPC
hardware and Big data/Machine
learning Software

• Support Iterative Computation,
Collective Communication, Intel
DAAL and native kernels

• Portable to new many-core
architectures like Xeon Phi and
run on Haswell and KNL clusters

1. Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

2. Optimization Methodologies

3. Results (configuration, benchmark)

4. Code Optimization Highlights

5. Conclusions and Future Work

Outline

Comparison of Reductions:

• Separate Map and Reduce Tasks

• Switching tasks is expensive

• MPI only has one sets of tasks for
map and reduce

• MPI achieves AllReduce by
interleaving multiple binary trees

• MPI gets efficiency by using
shared memory intra-node (e.g.
multi-/manycore, GPU)

General Reduction in Hadoop, Spark, Flink

Map Tasks

Reduce Tasks

Output partitioned
with Key

Follow by Broadcast for
AllReduce which is a common
approach to support iterative
algorithms

For example, paper [7] 10
learning algorithms can be
written in a certain “summation
form,” which allows them to be
easily parallelized on multicore
computers.

[7] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng and Kunle Olukotun, Map-Reduce for Machine Learning on Multicore,
in NIPS 19 2007.

HPC Runtime versus ABDS distributed Computing Model on Data Analytics

Hadoop writes to disk and is slowest; Spark and Flink spawn many processes and do not
support allreduce directly; MPI does in-place combined reduce/broadcast

Illustration of In-Place AllReduce in MPI

Why Collective Communications for Big Data Processing?

• Collective Communication and Data Abstractions

o Optimization of global model synchronization
o ML algorithms: convergence vs. consistency

o Model updates can be out of order

o Hierarchical data abstractions and operations

• Map-Collective Programming Model

o Extended from MapReduce model to support collective communications

o BSP parallelism at Inter-node vs. Intra-node levels

• Harp Implementation

o A plug-in to Hadoop

Harp APIs

Scheduler

• DynamicScheduler

• StaticScheduler

Collective

• MPI collective communication

• broadcast
• reduce
• allgather
• allreduce

• MapReduce “shuffle-reduce”

• regroup with combine

• Graph & ML operations

• “push” & “pull” model parameters
• rotate global model parameters

between workers

Event Driven

• getEvent

• waitEvent

• sendEvent

Collective Communication Operations

Taxonomy for Machine Learning Algorithms

Optimization and related issues

• Task level only can't capture the traits of computation

• Model is the key for iterative algorithms. The structure (e.g. vectors, matrix, tree,
matrices) and size are critical for performance

• Solver has specific computation and communication pattern

Parallel Machine Learning Application
Implementation Guidelines

Application

• Latent Dirichlet Allocation, Matrix Factorization,
Linear Regression…

Algorithm

• Expectation-Maximization, Gradient Optimization,
Markov Chain Monte Carlo…

Computation Model

• Locking, Rotation, Allreduce, Asynchronous

System Optimization
• Collective Communication Operations

• Load Balancing on Computation and Communication

• Per-Thread Implementation

Computation Models

[8] B. Zhang, B. Peng, and J. Qiu, “Model-centric computation abstractions in machine learning applications,” in Proceedings of
the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, BeyondMR@SIGMOD 2016

Computation Models

Locking Rotation

AsynchronousAllreduce

Distributed Memory

broadcast

reduce

allgather

allreduce

regroup

push & pull

rotate

sendEvent

getEvent

waitEvent

Communication Operations

Harp-DAAL
High Performance

Library

Shared Memory

Schedulers

Dynamic
Scheduler

Static
Scheduler

Computation Models
Model-Centric Synchronization Paradigm

Harp Solution to Big Data Problems

Example: K-means Clustering
The Allreduce Computation Model

Model

Worker Worker Worker

broadcast

reduce

allreduce
rotate

push & pull

allgather

regroup

When the model size is small
When the model size is large but can still be held
in each machine’s memory

When the model size
cannot be held in each
machine’s memory

1. Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

2. Optimization Methodologies

3. Results (configuration, benchmark)

4. Code Optimization Highlights

5. Conclusions and Future Work

Outline

Hardware specifications

All scalability tests run on the above Haswell (128 node) and KNL (64 node) clusters.

Harp-SAhad SubGraph Mining
VT and IU collaborative work

Relational sub-graph isomorphism problem: find sub-graphs in G which are isomorphic to the given template T.
SAhad is a challenging graph application that is both data intensive and communication intensive.
Harp-SAhad is an implementation for sub-graph counting problem based on SAHAD algorithm and Harp
framework.

b

s

c

s
bc

s

c

b b

s

c

s
b

TG

p

p’

w1

w5

w6

w2

w3

w4

[9] Zhao Z, Wang G, Butt A, Khan M, Kumar VS Anil, Marathe M. SAHad: Subgraph analysis in massive networks using hadoop. Shanghai, China:
IEEE Computer Society; 2012:390–401. Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

Harp-SAHad Performance Results
VT and IU collaborative work

Test Plan and Datasets

Harp-DAAL Applications

• Clustering
• Vectorized computation
• Small model data
• Regular Memory Access

• Matrix Factorization
• Huge model data
• Random Memory Access
• Easy to scale up
• Hard to parallelize

• Matrix Factorization
• Huge model data
• Regular Memory Access
• Easy to parallelize
• Hard to scale up

Harp-DAAL-Kmeans Harp-DAAL-SGD Harp-DAAL-ALS

[10] Langshi Chen, Bo Peng, Bingjing Zhang, Tony Liu, Yiming Zou, Lei Jiang, Robert Henschel, Craig Stewart, Zhang Zhang, Emily Mccallum, Zahniser Tom, Omer Jon, Judy Qiu,
Benchmarking Harp-DAAL: High Performance Hadoop on KNL Clusters, in the Proceedings of the International Conference on Cloud Computing (CLOUD 2017), June 25-30, 2017.

Computation models for K-means

Harp-DAAL-Kmeans

• Inter-node: Allreduce, Easy to implement,
efficient when model data is not large

• Intra-node: Shared Memory, matrix-
matrix operations, xGemm: aggregate
vector-vector distance computation
into matrix-matrix multiplication,
higher computation intensity (BLAS-3)

Computation models for MF-SGD

• Inter-node: Rotation
• Intra-node: Asynchronous

Rotation: Efficent when the mode data
Is large, good scalability

Asynchronous: Random access to model data
Good for thread-level workload balance.

Computation Models for ALS

• Inter-node: Allreduce

Intra-node: Shared Memory, Matrix operations
xSyrk: symmetric rank-k update

Performance on KNL Single Node

Harp-DAAL-Kmeans vs. Spark-Kmeans:

~ 20x speedup
1) Harp-DAAL-Kmeans invokes MKL matrix

operation kernels at low level
2) Matrix data stored in contiguous

memory space, leading to regular access
pattern and data locality

Harp-DAAL-SGD vs. NOMAD-SGD

1) Small dataset (MovieLens,
Netflix): comparable perf

2) Large dataset (Yahoomusic,
Enwiki): 1.1x to 2.5x, depending
on data distribution of matrices

Harp-DAAL-ALS vs. Spark-ALS

20x to 50x speedup
1) Harp-DAAL-ALS invokes MKL at

low level
2) Regular memory access, data

locality in matrix operations

Harp-DAAL has much better single node performance than Java solution (Spark-Kmeans, Spark-ALS) and
comparable performance to state-of-arts C++ solution (NOMAD-SGD)

Performance on KNL Multi-Nodes

Harp-DAAL-Kmeans:
15x to 20x speedup over Spark-Kmeans
1) Fast single node performance
2) Near-linear strong scalability from 10 to 20

nodes
3) After 20 nodes, insufficient computation

workload leads to some loss of scalability

Harp-DAAL-SGD:
2x to 2.5x speedup over NOMAD-SGD
1) Comparable or fast single node

performance
2) Collective communication operations in

Harp-DAAL outperform point-to-point
MPI communication in NOMAD

Harp-DAAL-ALS:
25x to 40x speedup over Spark-ALS
1) Fast single node performance
2) ALS algorithm is not scalable (high

communication ratio)

Harp-DAAL combines the benefits from local computation (DAAL kernels) and communication operations
(Harp), which is much better than Spark solution and comparable to MPI solution.

Breakdown of Intra-node Performance

Thread scalability:
• Harp-DAAL best threads number: 64 (K-means, ALS) and 128 (MF-SGD), more than 128 threads no

performance gain
o communications between cores intensify
o cache capacity per thread also drops significantly

• Spark best threads number 256, because Spark could not fully Utilize AVX-512 VPUs
• NOMAD-SGD could use AVX VPU, thus has 64 its best thread as that of Harp-DAAL-SGD

Breakdown of Intra-node Performance

Spark-Kmeans and Spark-ALS dominated by Computation (retiring), no AVX-512 to reduce
retiring Instructions, Harp-DAAL improves L1 cache bandwidth utilization due to AVX-512

Data Conversion

Harp Data
DAAL Java

API
DAAL Native

Kernel

• Table<Obj>
• Data on JVM Heap

• NumericTable
• Data on JVM heap
• Data on Native Memory

• MicroTable
• Data on Native Memory

Two ways to store data using DAAL Java API
• Keep Data on JVM heap

o no contiguous memory access requirement
o Small size DirectByteBuffer and parallel copy

(OpenMP)

A single DirectByteBuffer
has a size limite of 2 GB

Code Optimization Highlights

• Keep Data on Native Memory
o contiguous memory access requirement
o Large size DirectByteBuffer and bulk copy

Table

Used in collective com-

munication operations

Partition 2

Second partition in Table

Partition 1

First partition in Table

Partition 3

Third partition in Table

ID

Array

Data

Mem

JVM

ID

Array

Data

Mem

JVM

ID

Array

Data

Mem

JVM

ID

Array

Data

Mem

JVM

ID

Array

Data

Mem

JVM

ID

Array

Data

Mem

JVM

ID

Array

Data

Mem

JVM

ID

Array

Data

Mem

JVM

ID

Array

Data

Mem

JVM

HomogenNumericTable

Data Storage at Native side

M ember

Functions

getRow

setRow

getColumn

setColumn

others

Native Contiguous

Memory Space

SOANumericTable

Data Storage at Java side

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

M ember

Functions

jvm pointer

Accessor

mutator

others

JVM
JVM heap Mem

Non-contiguous

Data Structures of Harp & Intel’s DAAL

Harp Table consists of Partitions

DAAL Table has different types of Data storage

Table<Obj> in Harp has a three-level data
Hierarchy

• Table: consists of partitions
• Partition: partition id, container
• Data container: wrap up Java objs,

primitive arrays

Data in different partitions, non-contiguous in
memory

NumericTable in DAAL stores data either in
Contiguous memory space (native side)
or non-contiguous arrays (Java heap side)

Data in contiguous memory space favors matrix
operations with regular memory accesses.

Data in Harp Table

JVM memory

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Java Primitive

Array

Java Threads Copy in Parallel

DirectByteBuffer

Java NIOBulk Copy

Daal Table

Contiguous

C++ side Na-

tive Memory

JNI MethodBulk Copy

Data in Harp Table

JVM memory

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

DAAL Java API

SOANumericTable

Pass by Reference

BufferBufferBuffer Buffer Buffer DirectByteBuffer

Data Copy by Omp Threads

Omp Threads Copy via JVM

Daal Table

Contiguous Native

Memory C++ side

Two Types of Data Conversion

JavaBulkCopy:
Dataflow: Harp Table<Obj> -----
Java primitive array ---- DiretByteBuffer ----
NumericTable (DAAL)
Pros: Simplicity in implementation
Cons: high demand of DirectByteBuffer size

NativeDiscreteCopy:
Dataflow: Harp Table<Obj> ----
DAAL Java API (SOANumericTable)
---- DirectByteBuffer ---- DAAL native memory
Pros: Efficiency in parallel data copy
Cons: Hard to implement at low-level kernels

1. Introduction: HPC-ABDS, Harp (Hadoop plug in), DAAL

2. Optimization Methodologies

3. Results (configuration, benchmark)

4. Code Optimization Highlights

5. Conclusions and Future Work

Outline

Conclusions

• Identification of Apache Big Data Software Stack and integration with High

Performance Computing Stack to give HPC-ABDS

o ABDS (Many Big Data applications/algorithms need HPC for performance)

o HPC (needs software model productivity/sustainability)

• Identification of 4 computation models for machine learning applications

o Locking, Rotation, Allreduce, Asynchroneous

• HPC-ABDS: High performance Hadoop (with Harp-DAAL) on KNL and Haswell

clusters

http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/

Hadoop/Harp-DAAL: Prototype and Production Code

Source codes became available on
Github at Harp-DAAL project in
February, 2017.

• Harp-DAAL follows the same
standard of DAAL’s original codes

• Six Applications

 Harp-DAAL Kmeans

 Harp-DAAL MF-SGD

 Harp-DAAL MF-ALS

 Harp-DAAL SVD

 Harp-DAAL PCA

 Harp-DAAL Neural Networks

https://github.com/DSC-SPIDAL/harp/tree/master/harp-daal-app/src/edu/iu

Algorithm Category Applications Features
Computation

Model

Collective

Communication

K-means Clustering Most scientific domain Vectors
AllReduce

allreduce,

regroup+allgather,

broadcast+reduce,

push+pull
Rotation rotate

Multi-class Logistic

Regression
Classification Most scientific domain Vectors, words Rotation

regroup,
rotate,
allgather

Random Forests Classification Most scientific domain Vectors AllReduce allreduce

Support Vector

Machine

Classification,

Regression
Most scientific domain Vectors AllReduce allgather

Neural Networks Classification
Image processing,

voice recognition
Vectors AllReduce allreduce

Latent Dirichlet

Allocation

Structure learning

(Latent topic model)

Text mining, Bioinformatics,

Image Processing

Sparse vectors; Bag of

words
Rotation

rotate,

allreduce

Matrix Factorization
Structure learning

(Matrix completion)
Recommender system

Irregular sparse Matrix;

Dense model vectors
Rotation rotate

Multi-Dimensional

Scaling
Dimension reduction

Visualization and nonlinear
identification of principal
components

Vectors AllReduce allgarther, allreduce

Subgraph Mining Graph

Social network analysis,
data mining,
fraud detection, chemical
informatics, bioinformatics

Graph, subgraph Rotation rotate

Force-Directed Graph

Drawing
Graph

Social media community
detection and visualization

Graph AllReduce allgarther, allreduce

Scalable Algorithms implemented using Harp

Future Work

• Harp-DAAL machine learning and data analysis applications with optimal

performance

• Online Clustering with Harp or Storm integrates parallel and dataflow

computing models

• Start HPC Cloud incubator project in Apache to bring HPC-ABDS to community

Candidates with Batch codes
• Cholesky Decomposition

https://software.intel.com/en-us/node/564631

• QR Decomposition

https://software.intel.com/en-us/node/564640

• Expectation-Maximization

https://software.intel.com/en-us/node/564649

• Multivariate Outlier Detection

https://software.intel.com/en-us/node/564653

• Univariate Outlier Detection

https://software.intel.com/en-us/node/564657

• Association Rules

https://software.intel.com/en-us/node/564661

• Support Vector Machine Classifier (SVM)

https://software.intel.com/en-us/node/564708

Candidates with Distributed codes
• Principal Component Analysis (PCA)

https://software.intel.com/en-us/node/564625

• Singular Value Decomposition (SVD)

https://software.intel.com/en-us/node/564635

• Neural Networks

https://software.intel.com/en-us/node/681960

Plan A (completed)
Development of Harp-DAAL applications. DAAL
provides batch or distributed C/C++ codes and Java
interface for the following applications:

Plan B (to do)
A survey and benchmarking work for Machine learning
algorithms. We run benchmark algorithms from state-of-arts
machine learning libraries and evaluate their performance on
different platforms (Xeon, Xeon Phi, and GPU).

https://software.intel.com/en-us/node/564631
https://software.intel.com/en-us/node/564640
https://software.intel.com/en-us/node/564649
https://software.intel.com/en-us/node/564653
https://software.intel.com/en-us/node/564657
https://software.intel.com/en-us/node/564661
https://software.intel.com/en-us/node/564625
https://software.intel.com/en-us/node/564635
https://software.intel.com/en-us/node/681960

Six Computation Paradigms for Data Analytics

(1) Map Only (4) Point to Point or

Map-Communication

(3) Iterative Map Reduce or

Map-Collective

(2) Classic

Map-Reduce

Input

map

reduce

Input

map

reduce

Iterations
Input

Output

map

Local

Graph

(5) Map-Streaming

maps brokers

Events

(6) Shared memory

Map-Communication

Map & Communication

Shared Memory

Pleasingly Parallel

₋ BLAST Analysis
₋ Local Machine

Learning
₋ Pleasingly Parallel

₋ High Energy Physics
(HEP) Histograms,

₋ Web search
₋ Recommender Engines

₋ Expectation Maximization
₋ Clustering
₋ Linear Algebra
₋ PageRank

₋ Classic MPI
₋ PDE Solvers and

Particle Dynamics
₋ Graph

₋ Streaming images from
Synchrotron sources,
Telescopes,
Internet of Things

₋ Difficult to parallelize
₋ asynchronous parallel

Graph

These 3 Paradigms are our Focus

Langshi Cheng Bingjing Zhang Bo Peng Kannan Govindarajan

Supun Kamburugamuve Yiming Zhou Ethan Li Mihai Avram Vibhatha Abeykoon

Acknowledgements

Intelligent Systems Engineering

School of Informatics and Computing

Indiana University

We gratefully acknowledge support from NSF, IU and Intel Parallel Computing Center (IPCC) Grant.

