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High Performance – Apache Big Data Stack

• Big Data Application Analysis [1] [2] identifies features of data intensive applications that 
need to be supported in software and represented in benchmarks. This analysis has been 
extended to support HPC-Simulations-Big Data convergence. 

• The project is a collaboration between computer and domain scientists in application areas 
in Biomolecular Simulations, Network  Science, Epidemiology, Computer Vision, Spatial 
Geographical Information Systems, Remote Sensing for Polar Science and Pathology 
Informatics. 

• HPC-ABDS [3] as Cloud-HPC interoperable software with performance of HPC (High 
Performance Computing) and the rich functionality of the commodity Apache Big Data 
Stack was a bold idea developed. 

[1] Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, Geoffrey Fox, A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures, 
Proceedings of the 3rd International Congress on Big Data Conference (IEEE BigData 2014).

[2] Geoffrey Fox, Shantenu Jha, Judy Qiu, Andre Luckow, Towards an Understanding of Facets and Exemplars of Big Data Applications, accepted to the Twenty 
Years of Beowulf Workshop (Beowulf), 2014.

[3] Judy Qiu, Shantenu Jha, Andre Luckow, Geoffrey Fox, Towards HPC-ABDS: An Initial High-Performance Big Data Stack, accepted to the proceedings of ACM 1st 
Big Data Interoperability Framework Workshop: Building Robust Big Data ecosystem, NIST special publication, 2014.



Scalable Parallel Interoperable Data Analytics Library

• MIDAS integrating middleware that links HPC and ABDS now has several components 
including an architecture for Big Data analytics, an integration of HPC in 
communication and scheduling on ABDS; it also has rules to get high performance Java 
scientific code.

• SPIDAL (Scalable Parallel Interoperable Data Analytics Library) now has 20 members 
with domain specific and core algorithms. SPIDAL Java runs as fast as C++.

• Designed and Proposed HPC Cloud as hardware-software infrastructure supporting 

– Big Data Big Simulation Convergence

– Big Data Management via Apache Stack ABDS

– Big Data Analytics using SPIDAL and other libraries



Motivation for faster and bigger problems

• Machine Learning (ML) Needs high performance 

– Big data and Big model

– Iterative algorithms are fundamental in learning a non-trivial model

– Model training and Hyper-parameter tuning steps run the iterative 
algorithms many times

• Architecture for Big Data analytics

– to understand the algorithms through a Model-Centric view

– to focus on the computation and communication patterns for optimizations

– Trade-offs of efficiency and productivity

• linear speedup with an increasing number of processors

• easier to be parallelized on multicore or manycore computers 



Motivation of Iterative MapReduce
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Reduce (Key, List<Value>) 

Map(Key, Value)  

Loop Invariant Data
Loaded only once

Faster intermediate data 
transfer mechanism

Combiner operation to 
collect all reduce outputs

Cacheable map/reduce tasks 
(in memory)

Configure()

Combine(Map<Key,Value>)

Programming Model for Iterative MapReduce

• Distinction on loop invariant (e.g. input) 
data and variable (e.g. intermediate) data

• Cacheable map/reduce tasks (in-memory)
• Combine operation

Main Program

while(..)

{

runMapReduce(..)

}

Intermediate  data

Iterative MapReduce is a programming 
model that applies a computation (e.g. Map 
task) or function repeatedly, using output 
from one iteration as the input of the next 
iteration. By using this pattern, it can solve 
complex computation problems by using 
apparently simple (user defined) functions. 

Twister was our 
initial 
implementation 
with first paper 
having 854 Google 
Scholar citations



MapReduce Optimized for Iterative Computations

The speedy elephant

In-Memory [3]

• Cacheable 

map/reduce tasks

Data Flow [3]

• Iterative

• Loop Invariant 

• Variable data

Thread [3]

• Lightweight

• Local aggregation

Map-Collective [5]

• Communication 

patterns optimized for 

large intermediate data 

transfer

Portability [4][5]

• HPC (Java)

• Azure Cloud (C#)

• Supercomputer 

(C++, Java)

Abstractions

[3] J. Ekanayake et. al, “Twister: A Runtime for Iterative MapReduce”, in Proceedings of the 1st International Workshop on MapReduce and its 
Applications of ACM HPDC 2010 conference.

[4] T. Gunarathne et. al, “Portable Parallel Programming on Cloud and HPC: Scientific Applications of Twister4Azure”, in Proceedings of 4th IEEE 
International Conference on Utility and Cloud Computing (UCC 2011).

[5] B. Zhang et. al, “Harp: Collective Communication on Hadoop,” in Proceedings of IEEE International Conference on Cloud Engineering (IC2E 2015).



The Concept of Harp Plug-in

Parallelism Model Architecture

Shuffle
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Collective Communication

M M M M

R R

MapCollective ModelMapReduce Model
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MapReduce V2

Harp

MapReduce
Applications

MapCollective
ApplicationsApplication
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Resource 
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Harp is an open-source project developed at Indiana University [6], it has:
• MPI-like collective communication operations that are highly optimized for big data problems.
• Harp has efficient and innovative computation models for different machine learning problems. 

[6] Harp project. Available at https://dsc-spidal.github.io/harp



DAAL is an open-source project that provides:

• Algorithms Kernels to Users
• Batch Mode (Single Node)

• Distributed Mode (multi nodes)

• Streaming Mode (single node)

• Data Management & APIs to Developers
• Data structure, e.g., Table, Map, etc.

• HPC Kernels and Tools: MKL, TBB, etc.

• Hardware Support: Compiler



Harp-DAAL enable faster Machine Learning Algorithms
with Hadoop Clusters on Multi-core and Many-core architectures 

• Bridge the gap between HPC 
hardware and Big data/Machine 
learning Software

• Support Iterative Computation,  
Collective Communication,  Intel 
DAAL and native kernels

• Portable to  new many-core 
architectures like Xeon Phi and 
run on Haswell and KNL clusters
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Comparison of Reductions:

• Separate Map and Reduce Tasks

• Switching tasks is expensive

• MPI only has one sets of tasks for 
map and reduce

• MPI achieves AllReduce by 
interleaving multiple binary trees

• MPI gets efficiency by using 
shared memory intra-node (e.g. 
multi-/manycore, GPU)

General Reduction in Hadoop, Spark, Flink

Map Tasks

Reduce Tasks

Output partitioned 
with Key

Follow by Broadcast for 
AllReduce which is a common 
approach to support iterative 
algorithms

For example, paper [7] 10 
learning algorithms can be 
written in a certain “summation 
form,” which allows them to be 
easily parallelized on multicore 
computers.

[7] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng and Kunle Olukotun, Map-Reduce for Machine Learning on Multicore, 
in NIPS 19 2007.



HPC Runtime versus ABDS distributed Computing Model on Data Analytics

Hadoop writes to disk and is slowest; Spark and Flink spawn many processes and do not 
support allreduce directly; MPI does in-place combined reduce/broadcast



Illustration of In-Place AllReduce in MPI



Why Collective Communications for Big Data Processing?

• Collective Communication and Data Abstractions

o Optimization of global model synchronization
o ML algorithms: convergence vs. consistency

o Model updates can be out of order 

o Hierarchical data abstractions and operations

• Map-Collective Programming Model

o Extended from MapReduce model to support collective communications

o BSP parallelism at Inter-node vs. Intra-node levels 

• Harp Implementation

o A plug-in to Hadoop



Harp APIs

Scheduler

• DynamicScheduler

• StaticScheduler

Collective

• MPI collective communication

• broadcast
• reduce
• allgather
• allreduce

• MapReduce “shuffle-reduce”

• regroup with combine

• Graph & ML operations

• “push” & “pull” model parameters
• rotate global model parameters 

between workers

Event Driven

• getEvent

• waitEvent

• sendEvent



Collective Communication Operations



Taxonomy for Machine Learning Algorithms

Optimization and related issues

• Task level only can't capture the traits of  computation 

• Model is the key for iterative algorithms. The structure (e.g. vectors, matrix, tree, 
matrices) and size are critical for performance

• Solver has specific computation and communication pattern



Parallel Machine Learning Application 
Implementation Guidelines

Application

• Latent Dirichlet Allocation, Matrix Factorization,  
Linear Regression…

Algorithm

• Expectation-Maximization, Gradient Optimization, 
Markov Chain Monte Carlo…

Computation Model

• Locking, Rotation, Allreduce, Asynchronous

System Optimization
• Collective Communication Operations

• Load Balancing on Computation and Communication

• Per-Thread Implementation



Computation Models

[8]  B. Zhang, B. Peng, and J. Qiu, “Model-centric computation abstractions in machine learning applications,”  in Proceedings of 
the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, BeyondMR@SIGMOD 2016



Computation Models

Locking Rotation

AsynchronousAllreduce

Distributed Memory

broadcast

reduce

allgather

allreduce

regroup

push & pull

rotate

sendEvent

getEvent

waitEvent

Communication Operations

Harp-DAAL
High Performance 

Library

Shared Memory

Schedulers

Dynamic 
Scheduler

Static 
Scheduler

Computation Models
Model-Centric Synchronization Paradigm

Harp Solution to Big Data Problems



Example: K-means Clustering
The Allreduce Computation Model

Model

Worker Worker Worker

broadcast

reduce

allreduce
rotate

push & pull

allgather

regroup

When the model size is small
When the model size is large but can still be held 
in each machine’s memory

When the model size 
cannot be held in each 
machine’s memory
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Hardware specifications

All scalability tests run on the above Haswell (128 node) and KNL (64 node) clusters.



Harp-SAhad SubGraph Mining
VT and IU collaborative work

Relational sub-graph isomorphism problem: find sub-graphs in G which are isomorphic to the given template T.
SAhad is a challenging graph application that is both data intensive and communication intensive.
Harp-SAhad is an implementation for sub-graph counting problem based on SAHAD algorithm and Harp 
framework. 
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[9] Zhao Z, Wang G, Butt A, Khan M, Kumar VS Anil, Marathe M. SAHad: Subgraph analysis in massive networks using hadoop. Shanghai, China: 
IEEE Computer Society; 2012:390–401. Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium.



Harp-SAHad Performance Results
VT and IU collaborative work



Test Plan and Datasets



Harp-DAAL Applications

• Clustering
• Vectorized computation
• Small model data
• Regular Memory Access

• Matrix Factorization 
• Huge model data
• Random Memory Access
• Easy to scale up
• Hard to parallelize

• Matrix Factorization 
• Huge model data
• Regular Memory Access
• Easy to parallelize
• Hard to scale up

Harp-DAAL-Kmeans Harp-DAAL-SGD Harp-DAAL-ALS

[10] Langshi Chen, Bo Peng, Bingjing Zhang, Tony Liu, Yiming Zou, Lei Jiang, Robert Henschel, Craig Stewart, Zhang Zhang, Emily Mccallum, Zahniser Tom, Omer Jon, Judy Qiu, 
Benchmarking Harp-DAAL: High Performance Hadoop on KNL Clusters, in the Proceedings of the International Conference on Cloud Computing (CLOUD 2017), June 25-30, 2017.



Computation models for K-means

Harp-DAAL-Kmeans

• Inter-node: Allreduce, Easy to implement, 
efficient when model data is not large

• Intra-node: Shared Memory, matrix-
matrix operations, xGemm: aggregate 
vector-vector distance computation 
into matrix-matrix multiplication, 
higher computation intensity (BLAS-3)



Computation models for MF-SGD

• Inter-node: Rotation
• Intra-node: Asynchronous

Rotation: Efficent when the mode data
Is large, good scalability 

Asynchronous: Random access to model data 
Good for thread-level workload balance.



Computation Models for ALS

• Inter-node: Allreduce

Intra-node: Shared Memory, Matrix operations
xSyrk: symmetric rank-k update



Performance on KNL Single Node

Harp-DAAL-Kmeans vs. Spark-Kmeans:

~ 20x speedup
1) Harp-DAAL-Kmeans invokes MKL matrix 

operation kernels at low level
2) Matrix data stored in contiguous 

memory space, leading to regular access 
pattern and data locality

Harp-DAAL-SGD vs. NOMAD-SGD

1) Small dataset (MovieLens, 
Netflix): comparable perf

2) Large dataset (Yahoomusic, 
Enwiki): 1.1x to 2.5x, depending 
on data distribution of matrices

Harp-DAAL-ALS vs. Spark-ALS

20x to 50x speedup
1) Harp-DAAL-ALS invokes MKL at 

low level
2) Regular memory access, data 

locality in matrix operations

Harp-DAAL has much better single node performance than Java solution (Spark-Kmeans, Spark-ALS) and 
comparable performance to state-of-arts C++ solution (NOMAD-SGD)



Performance on KNL Multi-Nodes

Harp-DAAL-Kmeans:
15x to 20x speedup over Spark-Kmeans
1) Fast single node performance
2) Near-linear strong scalability from 10 to 20 

nodes
3) After 20 nodes, insufficient computation 

workload leads to some loss of scalability

Harp-DAAL-SGD:
2x to 2.5x speedup over NOMAD-SGD
1) Comparable or fast single node 

performance
2) Collective communication operations in 

Harp-DAAL outperform point-to-point 
MPI communication in NOMAD

Harp-DAAL-ALS:
25x to 40x speedup over Spark-ALS
1) Fast single node performance
2) ALS algorithm is not scalable (high 

communication ratio)

Harp-DAAL combines the benefits from local computation (DAAL kernels) and communication operations 
(Harp), which is much better than Spark solution and comparable to MPI solution. 



Breakdown of Intra-node Performance

Thread scalability:
• Harp-DAAL best threads number: 64 (K-means, ALS) and 128 (MF-SGD), more than 128 threads no 

performance gain
o communications between cores intensify 
o cache capacity per thread also drops significantly 

• Spark best threads number 256, because Spark could not fully Utilize AVX-512 VPUs
• NOMAD-SGD could use AVX VPU, thus has 64 its best thread as that of Harp-DAAL-SGD



Breakdown of Intra-node Performance

Spark-Kmeans and Spark-ALS dominated by  Computation (retiring), no AVX-512 to reduce 
retiring  Instructions, Harp-DAAL improves L1 cache bandwidth utilization due to AVX-512



Data Conversion

Harp Data
DAAL Java 

API
DAAL Native 

Kernel

• Table<Obj> 
• Data on JVM Heap

• NumericTable
• Data on JVM heap 
• Data on Native Memory

• MicroTable
• Data on Native Memory

Two ways to store data using DAAL Java API
• Keep Data on JVM heap 

o no contiguous memory access requirement 
o Small size DirectByteBuffer and parallel copy 

(OpenMP)

A single DirectByteBuffer
has a size limite of 2 GB

Code Optimization Highlights

• Keep Data on Native Memory 
o contiguous memory access requirement
o Large size DirectByteBuffer and bulk copy 
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Data Structures of Harp & Intel’s DAAL

Harp Table consists of Partitions

DAAL Table has different types of Data storage

Table<Obj> in Harp has a three-level data 
Hierarchy

• Table: consists of partitions
• Partition: partition id, container
• Data container: wrap up Java objs, 

primitive arrays

Data in different partitions, non-contiguous in 
memory

NumericTable in DAAL stores data either in
Contiguous memory space (native side) 
or non-contiguous arrays (Java heap side)

Data in contiguous memory space favors matrix
operations with regular memory accesses. 



Data in Harp Table
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Two Types of Data Conversion

JavaBulkCopy: 
Dataflow: Harp Table<Obj> -----
Java primitive array ---- DiretByteBuffer ----
NumericTable (DAAL)
Pros: Simplicity in implementation
Cons: high demand of DirectByteBuffer size

NativeDiscreteCopy:
Dataflow: Harp Table<Obj> ----
DAAL Java API (SOANumericTable)
---- DirectByteBuffer ---- DAAL native memory
Pros: Efficiency in parallel data copy 
Cons: Hard to implement at low-level kernels
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Conclusions

• Identification of Apache Big Data Software Stack and integration with High 

Performance Computing Stack to give HPC-ABDS

o ABDS (Many Big Data applications/algorithms need HPC for performance)

o HPC (needs software model productivity/sustainability)

• Identification of 4 computation models for machine learning applications

o Locking, Rotation, Allreduce, Asynchroneous

• HPC-ABDS: High performance Hadoop (with Harp-DAAL) on KNL and Haswell 

clusters

http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/twister4azure/
http://salsahpc.indiana.edu/twister4azure/


Hadoop/Harp-DAAL: Prototype and Production Code 

Source codes became available on 
Github at Harp-DAAL project in 
February, 2017.

• Harp-DAAL follows the same 
standard of DAAL’s original codes

• Six Applications 

 Harp-DAAL Kmeans

 Harp-DAAL MF-SGD 

 Harp-DAAL MF-ALS

 Harp-DAAL SVD

 Harp-DAAL PCA

 Harp-DAAL Neural Networks

https://github.com/DSC-SPIDAL/harp/tree/master/harp-daal-app/src/edu/iu


Algorithm Category Applications Features
Computation 

Model

Collective 

Communication

K-means Clustering Most scientific domain Vectors
AllReduce

allreduce, 

regroup+allgather, 

broadcast+reduce, 

push+pull
Rotation rotate

Multi-class Logistic 

Regression
Classification Most scientific domain Vectors, words Rotation

regroup,
rotate, 
allgather

Random Forests Classification Most scientific domain Vectors AllReduce allreduce

Support Vector 

Machine

Classification, 

Regression
Most scientific domain Vectors AllReduce allgather

Neural Networks Classification
Image processing, 

voice recognition
Vectors AllReduce allreduce

Latent Dirichlet

Allocation

Structure learning  

(Latent topic model)

Text mining, Bioinformatics, 

Image Processing

Sparse vectors; Bag of 

words
Rotation

rotate, 

allreduce

Matrix Factorization
Structure learning 

(Matrix completion)
Recommender system

Irregular sparse Matrix; 

Dense model vectors
Rotation rotate

Multi-Dimensional 

Scaling
Dimension reduction

Visualization and nonlinear 
identification of principal 
components

Vectors AllReduce allgarther, allreduce

Subgraph Mining Graph

Social network analysis, 
data mining, 
fraud detection, chemical 
informatics, bioinformatics

Graph, subgraph Rotation rotate

Force-Directed Graph 

Drawing
Graph

Social media community 
detection and visualization

Graph AllReduce allgarther, allreduce

Scalable Algorithms implemented using Harp



Future Work

• Harp-DAAL machine learning and data analysis applications with optimal 

performance

• Online Clustering with Harp or Storm integrates parallel and dataflow 

computing models

• Start HPC Cloud incubator project in Apache to bring HPC-ABDS to community



Candidates with Batch codes
• Cholesky Decomposition 

https://software.intel.com/en-us/node/564631

• QR Decomposition 

https://software.intel.com/en-us/node/564640

• Expectation-Maximization 

https://software.intel.com/en-us/node/564649

• Multivariate Outlier Detection 

https://software.intel.com/en-us/node/564653

• Univariate Outlier Detection 

https://software.intel.com/en-us/node/564657

• Association Rules 

https://software.intel.com/en-us/node/564661

• Support Vector Machine Classifier (SVM) 

https://software.intel.com/en-us/node/564708

Candidates with Distributed codes
• Principal Component Analysis (PCA) 

https://software.intel.com/en-us/node/564625

• Singular Value Decomposition (SVD)

https://software.intel.com/en-us/node/564635

• Neural Networks 

https://software.intel.com/en-us/node/681960

Plan A (completed)
Development of Harp-DAAL applications. DAAL 
provides batch or distributed C/C++ codes and Java 
interface for the following applications:

Plan B (to do)
A survey and benchmarking work for Machine learning 
algorithms. We run benchmark algorithms from state-of-arts 
machine learning libraries and evaluate their performance on 
different platforms (Xeon, Xeon Phi, and GPU).

https://software.intel.com/en-us/node/564631
https://software.intel.com/en-us/node/564640
https://software.intel.com/en-us/node/564649
https://software.intel.com/en-us/node/564653
https://software.intel.com/en-us/node/564657
https://software.intel.com/en-us/node/564661
https://software.intel.com/en-us/node/564625
https://software.intel.com/en-us/node/564635
https://software.intel.com/en-us/node/681960


Six Computation Paradigms for Data Analytics
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₋ BLAST Analysis
₋ Local Machine 
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₋ Pleasingly Parallel

₋ High Energy Physics 
(HEP) Histograms,

₋ Web search
₋ Recommender Engines

₋ Expectation Maximization
₋ Clustering 
₋ Linear Algebra
₋ PageRank
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₋ PDE Solvers and 

Particle Dynamics
₋ Graph

₋ Streaming images from 
Synchrotron sources, 
Telescopes, 
Internet  of Things

₋ Difficult to parallelize  
₋ asynchronous parallel 

Graph

These 3 Paradigms are our Focus
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