# Intelligent HPC Cloud

### Illustrated by Harp and Harp-DAAL at Indiana University IEEE Cloud Computing Conference June 26, 2017

Judy Qiu

Intelligent Systems Engineering Department, Indiana University Email: xqiu@indiana.edu

# **Intelligent HPC Cloud**



General Purpose Machine Intelligence requires both Cloud and HPC Technologies



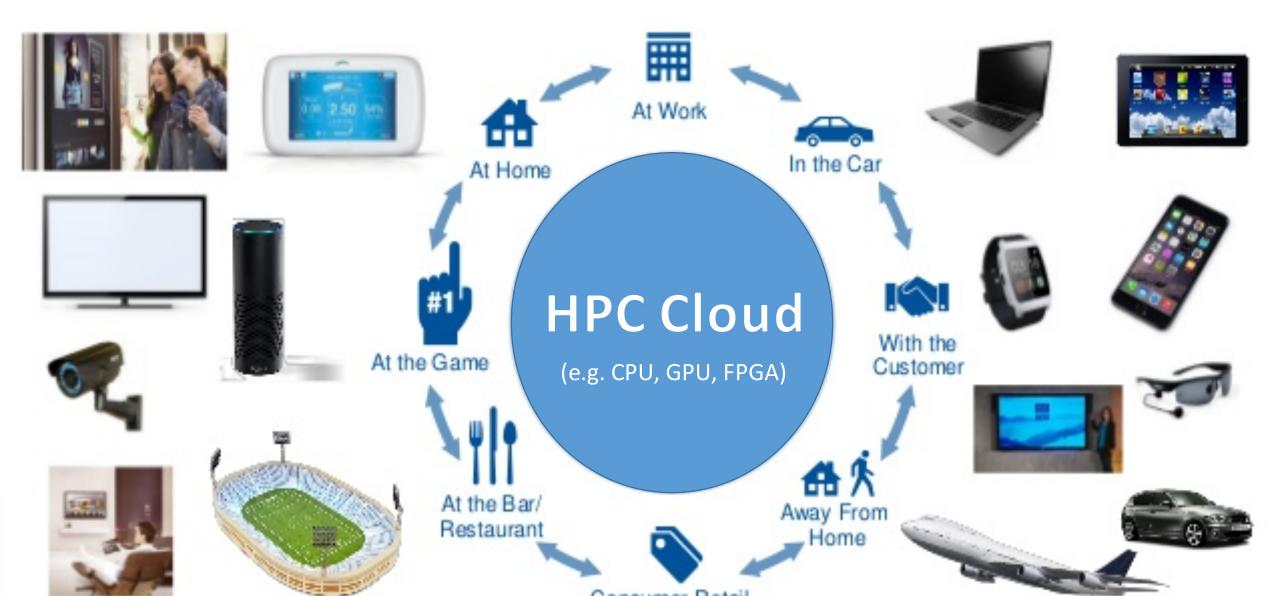
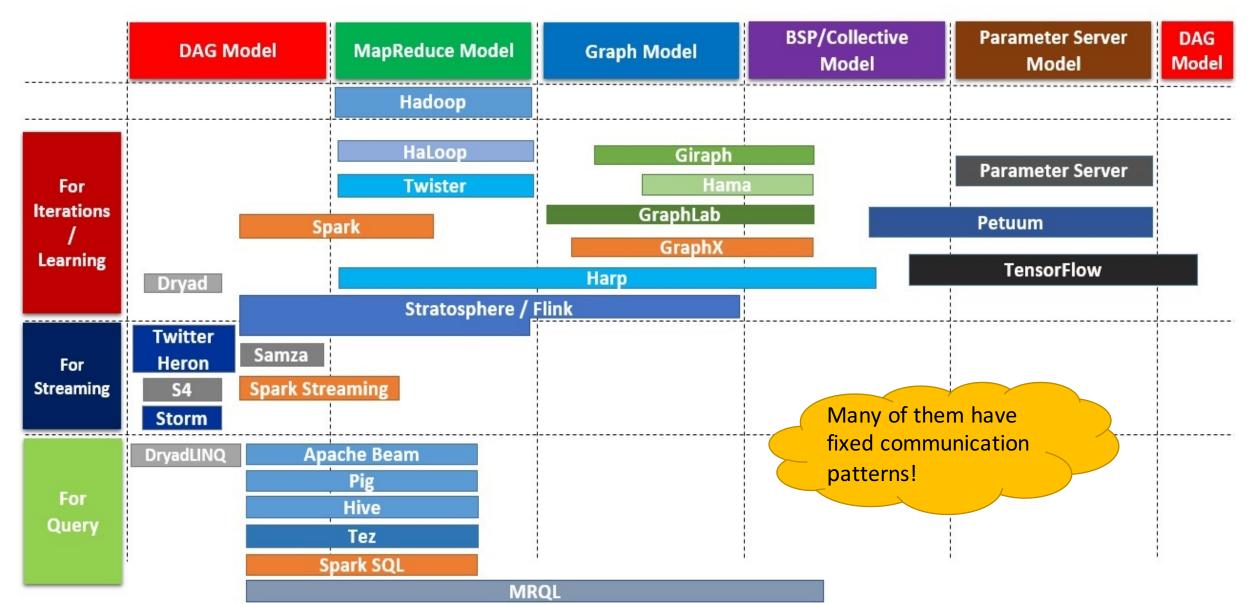

HPC-Apache Big Data Stack supports AI and IoT



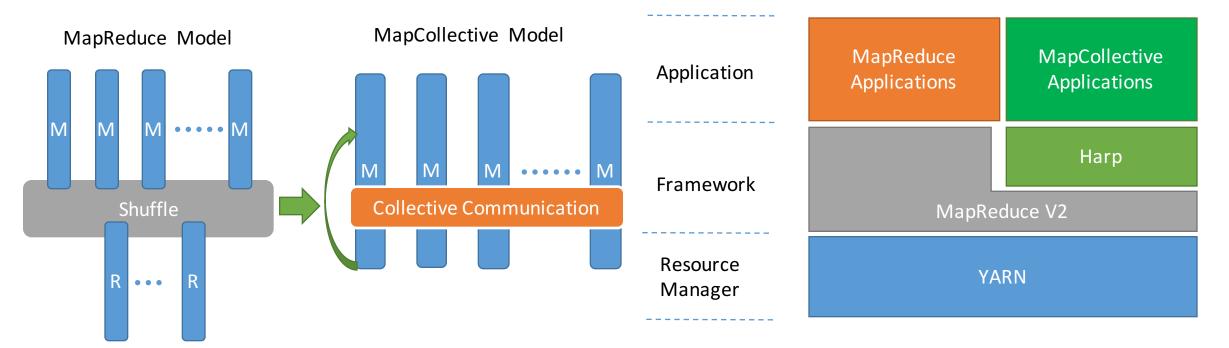
Illustration of Harp (Hadoop plug in) and Intel's High Performance Data Analytics


# **50 Billion Devices by 2020**

World Popular will be 7.6 billion by 2020

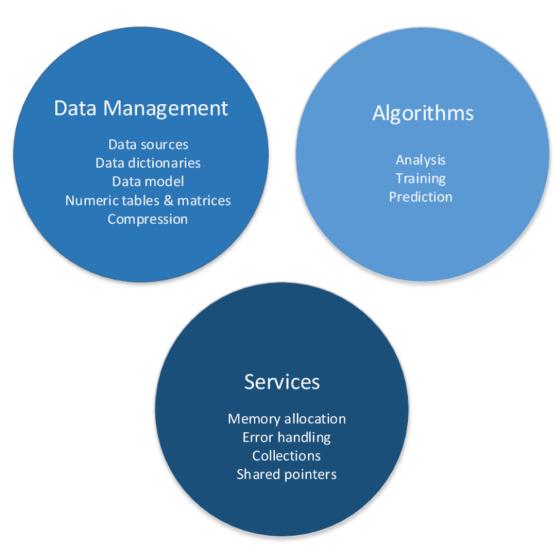


## **High Performance – Apache Big Data Stack**


**HPC-ABDS** as Cloud-HPC interoperable software with performance of HPC (High Performance Computing) and the rich functionality of the commodity Apache Big Data Stack was a bold idea developed.



# The Concept of Harp Plug-in for Hadoop

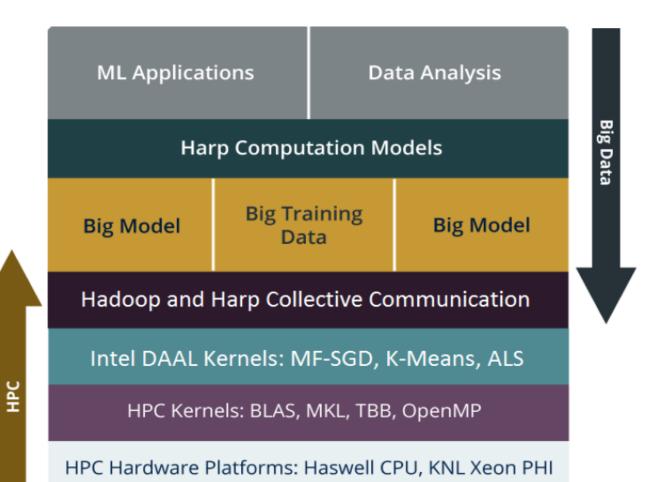

#### Parallelism Model

#### Architecture



Harp is an open-source project developed at Indiana University [6], it has:

- MPI-like collective communication operations that are highly optimized for big data problems.
- Harp has efficient and innovative **computation models** for different machine learning problems.




DAAL is an open-source project that provides:

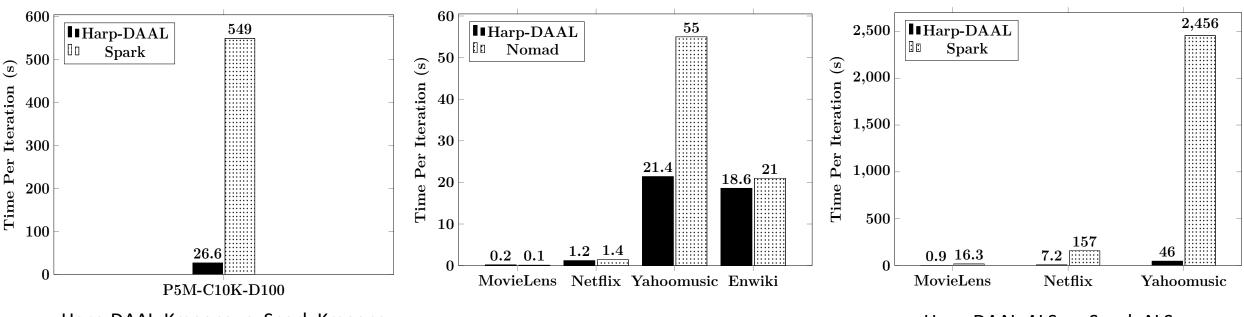
- Algorithms Kernels to Users
  - Batch Mode (Single Node)
  - Distributed Mode (multi nodes)
  - Streaming Mode (single node)
- Data Management & APIs to Developers
  - Data structure, e.g., Table, Map, etc.
  - HPC Kernels and Tools: MKL, TBB, etc.
  - Hardware Support: Compiler

### Intel Parallel Computing Center at Indiana University

Harp-DAAL enable faster Machine Learning Algorithms with Hadoop Clusters on Multi-core and Many-core architectures



 Bridge the gap between HPC hardware and Big data/Machine learning Software


inte

- Support Iterative Computation, Collective Communication, Intel DAAL and native kernels
- Portable to new many-core architectures like Xeon Phi and run on Haswell and KNL clusters

## Intel Parallel Computing Center at Indiana University

## Performance of Harp-DAAL on KNL Single Node

#### Harp-DAAL vs. Spark vs. NOMAD



Harp-DAAL-Kmeans vs. Spark-Kmeans:

#### ~ 20x speedup

- 1) Harp-DAAL-Kmeans invokes MKL matrix operation kernels at low level
- Matrix data stored in contiguous memory space, leading to regular access pattern and data locality

#### Harp-DAAL-SGD vs. NOMAD-SGD

- 1) Small dataset (MovieLens, Netflix): comparable perf
- Large dataset (Yahoomusic, Enwiki): *1.1x to 2.5x*, depending on data distribution of matrices

Harp-DAAL-ALS vs. Spark-ALS

#### 20x to 50x speedup

intel

- 1) Harp-DAAL-ALS invokes MKL at low level
- 2) Regular memory access, data locality in matrix operations



### Hadoop/Harp-DAAL: Prototype and Production Code

| DSC-SPIDAL / harp                                        |                             | O Unwatch →     | 13 ★ Star    | 1 8          | Fork 6    |
|----------------------------------------------------------|-----------------------------|-----------------|--------------|--------------|-----------|
| Code Issues 1 Pull requests 2 Project                    | ts 0 🗉 Wiki 🔸 Pulse         | III Graphs      | Settings     |              |           |
| Branch: master - harp / harp-daal-app / src / edu / iu / |                             | Create new file | Upload files | Find file    | History   |
| Chen add codes for harp-daal-als                         |                             |                 | Latest comm  | it 158f8e9 5 | days ago  |
|                                                          |                             |                 |              |              |           |
| benchmark                                                | re-structure the codes      |                 |              | 2 mo         | onths ago |
| 🖿 daal                                                   | add daal_kmeans codes       |                 |              | 2 mo         | onths ago |
| alal_als                                                 | add codes for harp-daal-als |                 |              | 5            | days ago  |
| aal_kmeans/regroupaligather                              | add daal_kmeans codes       |                 |              | 2 mo         | onths ago |
| aal_sgd                                                  | re-structure the codes      |                 |              | 2 mo         | onths ago |
| dymoro                                                   | re-structure the codes      |                 |              | 2 mo         | onths ago |
| illeformat                                               | re-structure the codes      |                 |              | 2 mo         | onths ago |
| kmeans                                                   | re-structure the codes      |                 |              | 2 mo         | onths ago |
| Train                                                    | re-structure the codes      |                 |              | 2 mo         | onths ago |
| wdamds                                                   | re-structure the codes      |                 |              | 2 mo         | onths ago |

Source codes became available on Github at <u>Harp-DAAL project</u> in February, 2017.

- Harp-DAAL follows the same standard of DAAL's original codes
- Six Applications
  - Harp-DAAL Kmeans
  - Harp-DAAL MF-SGD
  - Harp-DAAL MF-ALS
  - Harp-DAALSVD
  - Harp-DAAL PCA
  - Harp-DAAL Neural Networks

#### **Scalable Algorithms implemented using Harp**

| Algorithm                          | Category                                   | Applications                                                                                         | Features                                        | Computation<br>Model | Collective<br>Communication                                        |
|------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------|--------------------------------------------------------------------|
| K-means                            | Clustering                                 | Most scientific domain                                                                               | Vectors                                         | AllReduce            | allreduce,<br>regroup+allgather,<br>broadcast+reduce,<br>push+pull |
|                                    |                                            |                                                                                                      |                                                 | Rotation             | rotate                                                             |
| Multi-class Logistic<br>Regression | Classification                             | Most scientific domain                                                                               | Vectors, words                                  | Rotation             | regroup,<br>rotate,<br>allgather                                   |
| Random Forests                     | Classification                             | Most scientific domain                                                                               | Vectors                                         | AllReduce            | allreduce                                                          |
| Support Vector<br>Machine          | Classification,<br>Regression              | Most scientific domain                                                                               | Vectors                                         | AllReduce            | allgather                                                          |
| Neural Networks                    | Classification                             | Image processing,<br>voice recognition                                                               | Vectors                                         | AllReduce            | allreduce                                                          |
| Latent Dirichlet<br>Allocation     | Structure learning<br>(Latent topic model) | Text mining, Bioinformatics,<br>Image Processing                                                     | Sparse vectors; Bag of words                    | Rotation             | rotate,<br>allreduce                                               |
| Matrix Factorization               | Structure learning<br>(Matrix completion)  | Recommender system                                                                                   | Irregular sparse Matrix;<br>Dense model vectors | Rotation             | rotate                                                             |
| Multi-Dimensional<br>Scaling       | Dimension reduction                        | Visualization and nonlinear<br>identification of principal<br>components                             | Vectors                                         | AllReduce            | allgarther, allreduce                                              |
| Subgraph Mining                    | Graph                                      | Social network analysis,<br>data mining,<br>fraud detection, chemical<br>informatics, bioinformatics | Graph, subgraph                                 | Rotation             | rotate                                                             |
| Force-Directed Graph<br>Drawing    | Graph                                      | Social media community detection and visualization                                                   | Graph                                           | AllReduce            | allgarther, allreduce                                              |