
Architecture and Performance of Runtime Environments
for Data Intensive Scalable Computing

Data/compute intensive applications
implemented as MapReduce “filters”

Architecture of CGL-MapReduce

Measured using 32 Compute
nodes each with 8 cores and 16
GB of memory

• Compute intensive
application

• Embarrassingly
parallel operation

• All runtimes
performs equally well

Number of Reads processed

High Energy Physics Data Analysis

CAP3 – Gene Assembly Program

• Data intensive
application

• MapReduce style
parallel operation

• Both runtimes perform
comparably well

Jaliya Ekanayake {jekanaya@cs.indiana.edu}

Iterative MapReduce- Kmeans Clustering and Matrix Multiplication

Iterative MapReduce algorithm for
Matrix Multiplication

Kmeans Clustering implemented as an
iterative MapReduce application

Overhead of parallel runtimes – Matrix Multiplication

• Compute intensive
application O(n^3)

• Higher data transfer
requirements O(n^2)

• CGL-MapReduce
shows minimal
overheads next to
MPI

Overhead of parallel runtimes – Kmeans Clustering

• O(n) calculations in
each iteration

• Small data transfer
requirements O(1)

• With large data sets,
CGL-MapReduce
shows negligible
overheads

• Extremely higher
overheads in Hadoop
and DryadJaliya Ekanayake {jekanaya@cs.indiana.edu}

• Performance of MPI on virtualized resources
– Evaluated using a dedicated private cloud infrastructure
– Exactly the same hardware and software configurations in bare-metal and virtual nodes
– Applications with different communication: computation ratios
– Different virtual machine(VM) allocation strategies {1-VM per node to 8-VMs per node}

High Performance Parallel Computing on Cloud

Performance of Matrix multiplication
under different VM configurations

Overhead under different VM configurations for
Concurrent Wave Equation Solver

• O(n^2) communication (n = dimension of a matrix)

• More susceptible to bandwidth than latency

• Minimal overheads under virtualized
resources

• O(1) communication (Smaller messages)

• More susceptible to latency

• Higher overheads under virtualized
resources

Jaliya Ekanayake {jekanaya@cs.indiana.edu}

