
A Collective Communication Layer

A Collective Communication Layer
for the Software Stack of Big Data Analytics

(Thesis Proposal)

Bingjing Zhang

School of Informatics and Computing
Indiana University Bloomington

December 8, 2015



A Collective Communication Layer

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp
Collective Communication Abstractions
Layered Architecture

5 Machine Learning Library
K-means Clustering & WDA-SMACOF
LDA

6 Conclusion



A Collective Communication Layer
Research Backgrounds

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp

5 Machine Learning Library

6 Conclusion



A Collective Communication Layer
Research Backgrounds

Big Data Analytics

What is “big data” in analytics?

Big for huge input data
Big for huge intermediate data

Application examples - machine learning

Widely used in computer vision, text mining, advertising, recommender
systems, network analysis, and genetics
Training data (input) & model data (intermediate)

Scaling up these applications is difficult for systems!

For training data - use caching
For model data - limited support for model synchronization



A Collective Communication Layer
Research Backgrounds

Machine Learning & Collective Communication

Model synchronization in machine learning

Fine-grained control - what, when, where, how
High communication overhead
Performed iteratively

Suggest using collective communication abstractions!

Serve different communication patterns
Routing optimization



A Collective Communication Layer
Research Backgrounds

The System Solution to Big Data Problems

Data

• Big Data

Algorithm

• Machine 
Learning

System

• Hadoop 
with Harp

Big data brings 
challenges to analytics.

Iterative algorithms in analytics generate 
huge intermediate data and require 
collective communication abstractions.

A big data stack with 
Harp plug-in and a 
machine learning 
library solve big data 
problems efficiently.



A Collective Communication Layer
Related Work

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp

5 Machine Learning Library

6 Conclusion



A Collective Communication Layer
Related Work

Contemporary Big Data Tools

Tool Computation
Model

Data
Abstraction Communication Pattern

MPI [1] Loosely
Synchronous N/A Arrays and objects sending/receiving or collective com-

munication operations

Hadoop [2]

(Iterative)
MapReduce

Key-Values

Shuffle (disk-based) between Map stage and Reduce
stage

Twister [3] Regroup (in-memory) between Map stage and Reduce
stage, “broadcast” and “aggregate”

Spark [4] RDD RDD Transformations on RDD, “broadcast” and “ag-
gregate”

Dryad [5] DAG N/A Communication is between two connected vertex pro-
cesses in the execution of DAG

Giraph [6]

Graph/BSP Graph

Graph-based message communication following Pregel
model

Hama [7]
Graph-based message communication following Pregel
model or direct message communication between
workers

GraphLab
(Dato)

[8, 9, 10]

Graph-based communication through caching and
fetching of ghost vertices and edges or the
communication between master vertex and its replicas
in Power-Graph (GAS) model

GraphX [11] Graph-based communication supports Pregel model
and PowerGraph model



A Collective Communication Layer
Related Work

An Example of Chain Broadcast

1 25 50 75 100 125 150
Number of Nodes

0

5

10

15

20

25

30

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)
Chain 0.5GB
Chain 1GB
Chain 2GB

MPI 0.5GB
MPI 1GB
MPI 2GB

(a)

1 25 50 75 100 125 150
Number of Nodes

0

10

20

30

40

50

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

Chain 0.5GB
Chain 1GB
Chain 2GB

MPJ 0.5GB
MPJ 1GB

(b)

1 25 50 75 100 125 150
Number of Nodes

0

20

40

60

80

100

120

140

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

Chain 0.5GB
Chain 1GB
Chain 2GB

Chain w/oTA 0.5GB
Chain w/oTA 1GB
Chain w/oTA 2GB

(c)

1 25 50 75 100 125 150
Number of Nodes

0

500

1000

1500

2000

2500

3000

3500

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

Chain 0.5GB
Chain 1GB
Chain 2GB

Naive 0.5GB
Naive 1GB
Naive 2GB

(d)
Performance comparison between “broadcast” methods: (a) Chain vs. MPI (b) Chain vs. MPJ (c) Chain vs. Chain
without topology-awareness (d) Chain vs. Naive method



A Collective Communication Layer
Research Challenges

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp

5 Machine Learning Library

6 Conclusion



A Collective Communication Layer
Research Challenges

Research Challenges

Unite collective communication abstractions from different tools
Each tool has its own computation model, data and communication
abstractions
Provide a horizontally abstracted collective communication layer

Optimize collective communication operations
Naive implementation could harm the performance
Optimized implementation

Match collective communication to machine learning applications
Each machine learning application has its own features of model
synchronization
Find suitable operations or provide suitable abstractions



A Collective Communication Layer
Harp

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp

5 Machine Learning Library

6 Conclusion



A Collective Communication Layer
Harp

Contributions

• A collective communication abstraction layer
with data abstractions and communication abstractions

• A MapCollective programming model
on top of the communication abstraction layer
allows users to invoke collective communication operations to
synchronize parallel workers.

• A communication library
Hadoop plug-in



A Collective Communication Layer
Harp

The Concept of Harp Plug-in

Shuffle
M M M M

Collective Communication

M M M M

R R

MapCollective ModelMapReduce Model

YARN

MapReduce V2

Harp

MapReduce Applications
MapCollective
Applications

Application

Framework

Resource Manager

Architecture

Parallelism Model



A Collective Communication Layer
Harp

Collective Communication Abstractions

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp
Collective Communication Abstractions
Layered Architecture

5 Machine Learning Library
K-means Clustering & WDA-SMACOF
LDA

6 Conclusion



A Collective Communication Layer
Harp

Collective Communication Abstractions

Hierarchical Data Abstractions
• → as arrays, key-values, or edges and messages in graphs
• ↑ from basic types to partitions and tables

Key-Value Partition

Array

Transferable

Key-ValuesVerticesDouble 
Array

Int 
Array

Long 
Array

Array Partition
<Array Type>

Struct
Object

Array Table 
<Array Type>

Tuple Partition

Key-Value Table

Byte 
Array

Message 
Table

Edge
Table

Broadcast, Send

Broadcast, Reduce, Allgather, Allreduce, Regroup, 
Synchronized communication on graph or local/global data

Table

Partition

Basic Types

Edges, 
Messages

Broadcast, Send



A Collective Communication Layer
Harp

Collective Communication Abstractions

Collective Communication Operations

• Collective communication adapted from MPI operations [12]
“broadcast”
“reduce”
“allgather”
“allreduce”

• Collective communication derived from MapReduce “shuffle-reduce”
operation

“regroup” operation with “combine & reduce” support

• Collective communication based on graph
“send messages to vertices”

• Collective communication abstracted from data parallelism and model
parallelism in machine learning applications

data parallelism through “syncLocalWithGlobal” and
“syncGlobalWithLocal”
model parallelism through “rotateGlobal”



A Collective Communication Layer
Harp

Collective Communication Abstractions

Collective Communication Operations (cont’d)

Operation Algorithm Time Complexity

broadcast chain nβ
minimum spanning tree (log2 p)nβ

reduce minimum spanning tree (log2 p)nβ
allgather bucket pnβ

allreduce bi-directional exchange (log2 p)nβ
regroup-allgather 2nβ

regroup point-to-point direct sending nβ

send messages to vertices point-to-point direct sending nβ

syncLocalWithGlobal point-to-point direct sending
plus routing optimization pnβ

syncGlobalWithLocal point-to-point direct sending
plus routing optimization nβ

rotateGlobal direct sending between
neighbors nβ

Note in Column “Time Complexity”, p is the number of processes, n is the number of input data items
per worker, β is the per data item transmission time, communication startup time α is neglected and
the time complexity of the “point-to-point direct sending” algorithm is estimated regardless of potential
network conflicts.



A Collective Communication Layer
Harp

Collective Communication Abstractions

MapCollective Programming Model

• BSP style
each worker is deployed on a compute node

• Separate inter-node parallelism and intra-node parallelism
This is a world of “big” machines!
inter-node

I use collective communication to synchronize parallel workers
intra-node

I parallel threads with running state control



A Collective Communication Layer
Harp

Layered Architecture

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp
Collective Communication Abstractions
Layered Architecture

5 Machine Learning Library
K-means Clustering & WDA-SMACOF
LDA

6 Conclusion



A Collective Communication Layer
Harp

Layered Architecture

Layered Architecture

MapReduce

Collective Communication Abstractions

MapCollective Programming Model

Machine Learning Applications

Collective Communication 
Operators

Hierarchical Data Types 
(Tables & Partitions)

Memory Resource 
Pool

Collective Communication 
APIs

Array, Key-Value, Graph
Abstractions

MapCollective Interface

Task Management



A Collective Communication Layer
Machine Learning Library

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp

5 Machine Learning Library

6 Conclusion



A Collective Communication Layer
Machine Learning Library

Machine Learning Applications Implemented in Harp

Application Model Size Model
Dependency Parallelism Communication

K-means
Clustering

[13]

Usually in MB level,
but can grow to GB
level

All Data
Parallelism allreduce

WDA-
SMACOF

[14]
A few MBs All Data

Parallelism allgather & allreduce

LDA [15]
From a few GBs to
10s of GBs, or even
larger

Partial
Data

Parallelism
syncGlobalWithLocal &

syncLocalWithGlobal
Model

Parallelism rotateGlobal

Note: “model dependency” refers to the model data requirement in each local computation. “all” means
the local computation needs all the model data. “partial” means local computation may not need all
the model data. In “parallelism”, “Data Parallelism” means only the training data are split among
parallel workers, and each worker computes on a local model and updates it through the global model
synchronization with other workers. “Model Parallelism” means in addition to splitting the training
data over parallel workers, the global model data is split between parallel workers and rotated during
computation.



A Collective Communication Layer
Machine Learning Library

K-means Clustering & WDA-SMACOF

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp
Collective Communication Abstractions
Layered Architecture

5 Machine Learning Library
K-means Clustering & WDA-SMACOF
LDA

6 Conclusion



A Collective Communication Layer
Machine Learning Library

K-means Clustering & WDA-SMACOF

K-means Clustering

• Clustering 500 million 3D points into 10 thousand clusters
The input data is about 12GB
The ratio of points to clusters is 50000:1

• Clustering 5 million 3D points into 1 million clusters
The input data size is about 120MB
The ratio of points to clusters is 5:1



A Collective Communication Layer
Machine Learning Library

K-means Clustering & WDA-SMACOF

WDA-SMACOF

• SMACOF (Scaling by MAjorizing a COmplicated Function)
minimizes the difference between distances from points in the original
space and their distances in the new space through iterative stress
majorization

• WDA-SMACOF is an improved version of the original SMACOF
deterministic annealing
conjugate gradient
nested iterations
“allgather” and “allreduce”

• Runs with 100K, 200K, 300K and 400K points
each point represents a gene sequence [16]
100K - 140GB
200K - 560GB
300K - 1.3TB
400K - 2.2TB



A Collective Communication Layer
Machine Learning Library

K-means Clustering & WDA-SMACOF

Test Environment

• Big Red II [17]
“cpu” queue
maximum number of nodes per job submission - 128
each node has 32 threads and 64GB memory
Cluster Compatibility Mode
connected with Cray Gemini interconnect



A Collective Communication Layer
Machine Learning Library

K-means Clustering & WDA-SMACOF

Performance Results

8 16 32 64 128
Number of Nodes

0

1000

2000

3000

4000

5000

6000

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)
500Mp10Kc 5Mp1Mc

(a)

8 16 32 64 128
Number of Nodes

0

20

40

60

80

100

120

140

Sp
ee

du
p

500Mp10Kc 5Mp1Mc

(b)

8 16 32 64 128
Number of Nodes

0

1000

2000

3000

4000

5000

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

100K
200K

300K
400K

(c)

1 8 16 32 64 128
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

100K 200K 300K

(d)
(a) Execution time of k-means (b) Speedup of k-means (c) Execution time of WDA-SMACOF (d) Speedup of
WDA-SMACOF



A Collective Communication Layer
Machine Learning Library

LDA

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp
Collective Communication Abstractions
Layered Architecture

5 Machine Learning Library
K-means Clustering & WDA-SMACOF
LDA

6 Conclusion



A Collective Communication Layer
Machine Learning Library

LDA

Gibbs Sampling in LDA

• Observed data: Wij , word on position i in doc j
• Try to estimate the latent variables (Model Data)

Zij , topic assignment accordingly to Wij
Nwk , count matrix for word-topic distribution
Nkj , count matrix for topic-document distribution

• With parameters
Concentration Parameters - α, β, control model sparseness
D documents, V vocabulary size, K topics

W1,1

Nkj

Nwk

K*D
V*K

Wn,1
Wi,1

Zn,D

Zi,j

Z1,1
Zn,1

Wi,1

Wn,D

Wi,j

W1,1
Wn,1



A Collective Communication Layer
Machine Learning Library

LDA

Gibbs Sampling in LDA (cont’d)

Initialize:
sample topic index zij = k ∼ Mult(1/K )

Repeat until converge:
for all documents j ∈ [1,D] do

for all words position i ∈ [1,Nm] in document j do
// for the current assignment k to a token t of word wij , decrease counts
nkj −= 1; ntk −= 1;
// multinomial sampling
sample new topic index
k ′ ∼ p(zij |z¬ij ,w) ∝ N¬ij

wk +β∑
w

N¬ij
wk +V β

(
N¬ij

kj + α
)

// for the new assignment k′ to the token t of word wij , increase counts
nk′j += 1; ntk′ += 1;



A Collective Communication Layer
Machine Learning Library

LDA

Data Parallelism vs. Model Parallelism in LDA

Training Data 1

Local Model

Global Model

Training Data 2

Local Model

Training Data 3

Local Model

Training Data 4

Local Model

Worker

Training Data 1

Global Model 1

Training Data 2

Global Model 2

Training Data 3

Global Model 3

Training Data 4

Global Model 4

Data Parallelism

Worker Worker Worker

Model Parallelism

WorkerWorker Worker Worker

Model Data Update between 
Parallel Workers or Client/Server

Global Model Rotation



A Collective Communication Layer
Machine Learning Library

LDA

Synchronized Method vs. Asynchronous Method in LDA

Sample 
a word

Sample 
a word

Send the word

Send the word

Sample words

Sample words

Update words

Update words

Sample 
a word

Sample 
a word

Send the word

Send the word

Asynchronous Communication Synchronized Communication

Time

Threading Computation Communication

Sample words

Update words

Sample 
a word

Sample 
a word

Send the word

Send the word



A Collective Communication Layer
Machine Learning Library

LDA

LDA Work Using CGS Algorithm

Application Algorithm Parallelism Communication

PLDA [18] CGS [19] (sample by
docs) D. P. allreduce (sync)

Dato [20] CGS (sample by
doc-word edge) D. P. GAS (sync)

Yahoo! LDA [21, 22] CGS (SparseLDA [23]
& sample by docs) D. P. client-server (async)

Peacock [24] CGS (SparseLDA &
sample by words) D. P. (M. P. in local) client-server (async)

Parameter Server [25] CGS (combined with
other methods) D. P. client-server (async)

Petuum 0.93 [26] CGS (SparseLDA &
sample by docs) D. P. client-server (async)

Petuum 1.1 [27, 28] CGS (SparseLDA &
sample by words) M. P. (include D. P.) ring/star topology

(async)
Note: “D. P.” refers to Data Parallelism. “M. P.” refers to Model Parallelism.



A Collective Communication Layer
Machine Learning Library

LDA

Power-law Distribution

100 101 102 103 104 105 106 107

Word Rank

100

101

102

103

104

105

106

107

108

109

1010

W
or

d
Fr

eq
ue

nc
y

clueweb

y = 109.9x−0.9

enwiki

y = 107.4x−0.8

(a)

100 101 102 103 104

Document Collection Partition Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Vo
ca

bu
la

ry
Si

ze
of

Pa
rt

iti
on

(%
) clueweb

enwiki

(b)

(a) Zipf’s Law of the word frequency (b) Number of words per partition under
different partitioning



A Collective Communication Layer
Machine Learning Library

LDA

LDA Implementations

Training Data

1 Load

WorkerWorkerWorker

Sync

4

Global 
Model 2

Compute

2

Global 
Model 3

Compute

2

Global 
Model 1

Compute

2

33 SyncSync3

Iteration

Local 
Model

Local 
Model

Local 
Model

WorkerWorkerWorker

Rotate

Global 
Model 2

Compute

2

Global 
Model 3

Compute

2

Global 
Model 1

Compute

2

33 RotateRotate3

lda-lgs
(use syncLocalWithGlobal
& syncGlobalWithLocal)

lda-rtt
(use rotateGlobal)



A Collective Communication Layer
Machine Learning Library

LDA

Test Environment in LDA Experiments

• Juliet Intel Haswell cluster [29]
32 nodes each with two 18-core 36-thread Xeon E5-2699
processors and 96 nodes each with two 12-core 24-thread Xeon
E5-2670 processors.
128GB memory
network - 1Gbps Ethernet (eth) and Infiniband (ib)

• In LDA experiments...
31 nodes with Xeon E5-2699 and 69 nodes with Xeon E5-2670
are used to form a cluster of 100 nodes with 40 threads
use ib in default



A Collective Communication Layer
Machine Learning Library

LDA

Training Datasets Used In LDA Experiments

• The total number of model parameters is kept as 10 billion
on all the datasets.

Dataset enwiki clueweb bi-gram gutenberg
Num. of Docs 3.8M 50.5M 3.9M 26.2K
Num. of Tokens 1.1B 12.4B 1.7B 836.8M
Vocabulary 1M 1M 20M 1M
Doc Len. AVG/STD 293/523 224/352 434/776 31879/42147
Highest Word Freq. 1714722 3989024 459631 1815049
Lowest Word Freq. 7 285 6 2
Num. of Topics 10K 10K 500 10K
Init. Model Size 2.0GB 14.7GB 5.9GB 1.7GB
Note: Both “enwiki” and “bi-gram” are English articles from Wikipedia [30]. “clueweb” is a 10%
dataset from ClueWeb09, which is a collection of English web pages [31]. “gutenberg” is comprised
of English books from Project Gutenberg [32].



A Collective Communication Layer
Machine Learning Library

LDA

Implementations Used In LDA Experiments

DATA PARALLELISM

lgs - “lda-lgs” impl. with no routing optimization
- Slower than “lgs-opt”

lgs-opt - “lgs” with routing optimization
- Faster than Yahoo! LDA on “enwiki” with higher model likelihood

lgs-opt-4s

- “lgs-opt” with 4 rounds of model synchronization per iteration; each round
uses 1/4 of the training data
- Performance comparable to Yahoo! LDA on “clueweb” with higher model
likelihood

Yahoo! LDA - Master branch on GitHub [33]
MODEL PARALLELISM

rtt
- “lda-rtt” impl.
- Speed comparable with Petuum on “clueweb” but 3.9 times faster on “bi-
gram” and 5.4 times faster on “gutenberg”

Petuum - Version 1.1 [34]
Note: Proposed implementations are indicated in bold.



A Collective Communication Layer
Machine Learning Library

LDA

LDA Model Convergence Speed Per Iteration

0 50 100 150 200

Iteration Number

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1011

lgs-opt
Yahoo!LDA
rtt
Petuum
lgs-opt-4s

(a)

0 50 100 150 200

Iteration Number

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1010

lgs-opt
Yahoo!LDA
rtt
Petuum

(b)

(a) Model convergence speed of “clueweb” on iterations (b) Model convergence speed
of “enwiki” on iterations



A Collective Communication Layer
Machine Learning Library

LDA

LDA Data Parallelism on “clueweb”

0 5000 10000 15000 20000 25000

Execution Time (s)

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1011

lgs-opt
Yahoo!LDA
lgs-opt-4s

(a)

0 5000 10000 15000 20000 25000

Execution Time (s)

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

) lgs-opt-iter
Yahoo!LDA-iter
lgs-opt-4s-iter

(b)

0 50 100 150 200

Num. of Synchronization Passes

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

rS
yn

cP
as

s
(s

) lgs-opt-comm
Yahoo!LDA-comm
lgs-comm

(c)

0 50 100 150 200

Num. of Synchronization Passes

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

rS
yn

cP
as

s
(s

) lgs-opt-comm
Yahoo!LDA-comm
lgs-comm

(d)
(a) Elapsed Execution Time vs. Model Likelihood (b) Elapsed Execution Time vs. Iteration Execution Time (c)
Num. of Sync. Passes vs. Sync. Time per Pass with ib (d) Num. of Sync. Passes vs. Sync. Time per Pass with eth



A Collective Communication Layer
Machine Learning Library

LDA

LDA Data Parallelism on “enwiki”

0 500 1000 1500 2000 2500 3000 3500

Execution Time (s)

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1010

lgs-opt
Yahoo!LDA

(a)

0 500 1000 1500 2000 2500 3000 3500

Execution Time (s)

0

10

20

30

40

50

60

70

80

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

) lgs-opt-iter
Yahoo!LDA-iter

(b)

0 50 100 150 200

Num. of Synchronization Passes

0

20

40

60

80

100

120

140

160

E
xe

cu
tio

nT
im

e
Pe

rS
yn

cP
as

s
(s

) lgs-opt-comm
Yahoo!LDA-comm
lgs-comm

(c)

0 50 100 150 200

Num. of Synchronization Passes

0

20

40

60

80

100

120

140

160

E
xe

cu
tio

nT
im

e
Pe

rS
yn

cP
as

s
(s

) lgs-opt-comm
Yahoo!LDA-comm
lgs-comm

(d)
(a) Elapsed Execution Time vs. Model Likelihood (b) Elapsed Execution Time vs. Iteration Execution Time (c)
Num. of Sync. Passes vs. Sync. Time per Pass with ib (d) Num. of Sync. Passes vs. Sync. Time per Pass with eth



A Collective Communication Layer
Machine Learning Library

LDA

LDA Model Parallelism on “clueweb”

0 1000 2000 3000 4000 5000 6000 7000 8000

Execution Time (s)

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1011

rtt
Petuum

(a)

0 1000 2000 3000 4000 5000 6000 7000

Execution Time (s)

0

50

100

150

200

250

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

) rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(b)

1 2 3 4 5 6 7 8 9 10

Iteration

0

50

100

150

200

250

300

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

181

131
121 116 112

106
100

92
85

80

57

23
21

18 19
18

17
18

16
15

59 54 52 50 48 44 42 39 36 35

33
30 28 32

29 29 31
29 30 26

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(c)

191 192 193 194 195 196 197 198 199 200

Iteration

0

5

10

15

20

25

30

35

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

23 23 23 23 23 23 23 23 23 23

3
3 3

2
3 3 3

2 3
3

19 19 19 19
19 19 19 19 19 19

10
10

10
11

9 10 9 9 10 10

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(d)
(a) Elapsed Execution Time vs. Model Likelihood (b) Elapsed Execution Time vs. Iteration Execution Time (c)
First 10 Iteration Execution Times (d) Final 10 Iteration Execution Times



A Collective Communication Layer
Machine Learning Library

LDA

LDA Model Parallelism on “bi-gram”

0 1000 2000 3000 4000 5000 6000

Execution Time (s)

−2.4

−2.3

−2.2

−2.1

−2.0

−1.9

−1.8

−1.7

M
od

el
L

ik
el

ih
oo

d

×1010

rtt
Petuum

(a)

0 1000 2000 3000 4000 5000 6000

Execution Time (s)

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(b)

1 2 3 4 5 6 7 8 9 10

Iteration

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

28

16
12 11 10 9 8 7 7 6

71

38

31
29

36 36

27
25 25 25

7 7 7 7 6 6 6 6 6 6

110

87
84

82 81
86 86 85

102

84

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(c)

53 54 55 56 57 58 59 60 61 62

Iteration

0

20

40

60

80

100

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

4 4 4 4 4 4 4 4 4 4

19 20 21 21 19 19 19 19 19 20

6 6 6 6 6 6 6 6 6 6

82
86 86

84
86

81

86 87
83

88

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(d)
(a) Elapsed Execution Time vs. Model Likelihood (b) Elapsed Execution Time vs. Iteration Execution Time (c)
First 10 Iteration Execution Times (d) Final 10 Iteration Execution Times



A Collective Communication Layer
Machine Learning Library

LDA

LDA Model Parallelism on “gutenburg”

0 500 1000 1500 2000 2500

Execution Time (s)

−8.0

−7.5

−7.0

−6.5

−6.0

−5.5

M
od

el
L

ik
el

ih
oo

d

×109

rtt
Petuum

(a)

0 500 1000 1500 2000 2500

Execution Time (s)

0

20

40

60

80

100

120

140

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

) rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(b)

1 2 3 4 5 6 7 8 9 10

Iteration

0

20

40

60

80

100

120

140

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

36

24
20

16 14 12 10 8 7 5

15

9

8
8

8 8 8
7 7 7

19
17 15 14 12 11 10 9 8 8

108

90

85

73 75

65
61

57
54

49

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(c)

91 92 93 94 95 96 97 98 99 100

Iteration

0

2

4

6

8

10

12

14

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

1 1 1 1 1 1 1 1 1 1

3 3
3

3 3 3 3 3 3 3

6 6 6 6 6
6

5
5

6 6

5 5
5 5

6
5 5 6

5 5

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(d)
(a) Elapsed Execution Time vs. Model Likelihood (b) Elapsed Execution Time vs. Iteration Execution Time (c)
First 10 Iteration Execution Times (d) Final 10 Iteration Execution Times



A Collective Communication Layer
Conclusion

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp

5 Machine Learning Library

6 Conclusion



A Collective Communication Layer
Conclusion

Conclusion

• Collective communication is essential to the performance of
model synchronization in the machine learning applications.
• The research on LDA shows that improving the efficiency of

model synchronization allows the model to converge faster,
shrink the model size, and further reduce the later
computation time.
• In future work, it is expected to improve the performance of

other machine learning applications through applying the
collective communication abstraction on the model
synchronization.



A Collective Communication Layer
References

References I

[1] D. W. Walker and J. J. Dongarra, “MPI: a standard message passing interface,” in Supercomputer,
vol. 12, 1996, pp. 56–68.

[2] “Hadoop,” http://hadoop.apache.org.
[3] J. Ekanayake et al., “Twister: a runtime for iterative mapreduce,” in Proceedings of the 19th ACM

International Symposium on High Performance Distributed Computing, 2010, pp. 810–818.
[4] M. Zaharia et al., “Spark: cluster computing with working sets,” in Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing, vol. 10, 2010, p. 10.
[5] M. Isard et al., “Dryad: distributed data-parallel programs from sequential building blocks,” in ACM

SIGOPS Operating Systems Review, vol. 41, no. 3, 2007, pp. 59–72.
[6] “Giraph,” https://giraph.apache.org.
[7] “Hama,” https://hama.apache.org.
[8] Y. Low et al., “Distributed graphlab: a framework for machine learning and data mining in the cloud,”

Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716–727, 2012.
[9] J. E. Gonzalez et al., “PowerGraph: distributed graph-parallel computation on natural graphs,” in OSDI,

vol. 12, 2012, p. 2.
[10] “Dato,” https://dato.com.
[11] R. Xin et al., “Graphx: A resilient distributed graph system on spark,” in First International Workshop on

Graph Data Management Experiences and Systems, 2013, p. 2.
[12] E. Chan et al., “Collective communication: theory, practice, and experience,” Concurrency and

Computation: Practice and Experience, vol. 19, no. 13, pp. 1749–1783, 2007.
[13] S. Lloyd, “Least squares quantization in pcm,” Information Theory, IEEE Transactions on, vol. 28, no. 2,

pp. 129–137, 1982.
[14] Y. Ruan and G. Fox, “A robust and scalable solution for interpolative multidimensional scaling with

weighting,” in IEEE 9th International Conference on eScience, 2013, pp. 61–69.
[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” The Journal of Machine Learning

Research, vol. 3, pp. 993–102, 2003.
[16] Y. Ruan et al., “Integration of clustering and multidimensional scaling to determine phylogenetic trees as

spherical phylograms visualized in 3 dimensions,” in Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on, 2014, pp. 720–729.

https://hama.apache.org


A Collective Communication Layer
References

References II

[17] “Big Red II,” https://kb.iu.edu/data/bcqt.html.
[18] Y. Wang et al., “PLDA: parallel latent dirichlet allocation for large-scale applications,” Algorithmic

Aspects in Information and Management, pp. 301–314, 2009.
[19] P. Resnik and E. Hardist, “Gibbs sampling for the uninitiated,” University of Maryland, Tech. Rep., 2010.
[20] “Dato LDA,”

https://github.com/dato-code/PowerGraph/blob/master/toolkits/topic modeling/topic modeling.dox.
[21] A. Smola and S. Narayanamurthy, “An architecture for parallel topic models,” in VLDB, vol. 3, no. 1-2,

2010, pp. 703–710.
[22] A. Ahmed et al., “Scalable inference in latent variable models,” in WSDM, 2012, pp. 123–132.
[23] L. Yao, D. Mimno, and A. McCallum, “Efficient methods for topic model inference on streaming document

collections,” in KDD, 2009, pp. 937–946.
[24] Y. Wang et al., ““Peacock: learning long-tail topic features for industrial applications,” ACM Transactions

on Intelligent Systems and Technology, vol. 6, no. 4, 2015.
[25] M. Li et al., “Scaling distributed machine learning with the parameter server,” in OSDI, 2014, pp. 583–598.
[26] Q. Ho et al., “More effective distributed ml via a stale synchronous parallel parameter server,” in Advances

in neural information processing systems, 2013, pp. 1223–1231.
[27] S. Lee et al., “On model parallelization and scheduling strategies for distributed machine learning,” in

NIPS, 2014, pp. 2834–2842.
[28] E. P. Xing et al., “Petuum: a new platform for distributed machine learning on big data,” in KDD, 2013.
[29] “FutureSystems,” https://portal.futuresystems.org.
[30] “wikipedia,” https://www.wikipedia.org.
[31] “clueweb,” http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=Dataset+Information.
[32] “gutenburg,” https://www.gutenberg.org.
[33] “Yahoo! LDA,” https://github.com/sudar/Yahoo LDA.
[34] “Petuum LDA,” https://github.com/petuum/bosen/wiki/Latent-Dirichlet-Allocation.

https://github.com/dato-code/PowerGraph/blob/master/toolkits/topic_modeling/topic_modeling.dox


A Collective Communication Layer
List of Publications

List of Publications

1. B. Zhang, Y. Ruan, and J. Qiu, “Harp: Collective communication on hadoop,” in Proceedings of IEEE
International Conference on Cloud Engineering (IC2E), 2015.

2. B. Zhang and J. Qiu, “High performance clustering of social images in a map-collective programming model,”
in Proceedings of the 4th annual Symposium on Cloud Computing, 2013.

3. J. Qiu and B. Zhang, “Mammoth data in the cloud: clustering social images,” in Clouds, Grids and Big Data,
ser. Advances in Parallel Computing. IOS Press, 2013.

4. T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, “Scalable parallel computing on clouds using twister4azure
iterative mapreduce,” Future Generation Computer Systems, vol. 29, no. 4, pp. 1035–1048, 2013.

5. T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, “Portable parallel programming on cloud and hpc: Scientific
applications of twister4azure,” in Utility and Cloud Computing (UCC), 2011 Fourth IEEE International
Conference on, 2011, pp. 97–104.

6. B. Zhang, Y. Ruan, T.-L. Wu, J. Qiu, A. Hughes, and G. Fox, “Applying twister to scientific applications,” in
Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on, 2010,
pp. 25–32.

7. J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae, H. Li, B. Zhang, T.-L. Wu, Y. Ruan, and
S. Ekanayake, “Hybrid cloud and cluster computing paradigms for life science applications,” BMC
bioinformatics, vol. 11, 2010.

8. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox, “Twister: a runtime for
iterative mapreduce,” in Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, 2010, pp. 810–818.


	Research Backgrounds
	Related Work
	Research Challenges
	Harp
	Collective Communication Abstractions
	Layered Architecture

	Machine Learning Library
	K-means Clustering & WDA-SMACOF
	LDA

	Conclusion

