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Big Data Analytics

What is “big data” in analytics?

Big for huge input data
Big for huge intermediate data

Application examples - machine learning

Widely used in computer vision, text mining, advertising, recommender
systems, network analysis, and genetics
Training data (input) & model data (intermediate)

Scaling up these applications is difficult for systems!

For training data - use caching
For model data - limited support for model synchronization



A Collective Communication Layer
Research Backgrounds

Machine Learning & Collective Communication

Model synchronization in machine learning

Fine-grained control - what, when, where, how
High communication overhead
Performed iteratively

Suggest using collective communication abstractions!

Serve different communication patterns
Routing optimization
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The System Solution to Big Data Problems

Data

• Big Data

Algorithm

• Machine 
Learning

System

• Hadoop 
with Harp

Big data brings 
challenges to analytics.

Iterative algorithms in analytics generate 
huge intermediate data and require 
collective communication abstractions.

A big data stack with 
Harp plug-in and a 
machine learning 
library solve big data 
problems efficiently.



A Collective Communication Layer
Related Work

Table of Contents

1 Research Backgrounds

2 Related Work

3 Research Challenges

4 Harp

5 Machine Learning Library

6 Conclusion



A Collective Communication Layer
Related Work

Contemporary Big Data Tools

Tool Computation
Model

Data
Abstraction Communication Pattern

MPI [1] Loosely
Synchronous N/A Arrays and objects sending/receiving or collective com-

munication operations

Hadoop [2]

(Iterative)
MapReduce

Key-Values

Shuffle (disk-based) between Map stage and Reduce
stage

Twister [3] Regroup (in-memory) between Map stage and Reduce
stage, “broadcast” and “aggregate”

Spark [4] RDD RDD Transformations on RDD, “broadcast” and “ag-
gregate”

Dryad [5] DAG N/A Communication is between two connected vertex pro-
cesses in the execution of DAG

Giraph [6]

Graph/BSP Graph

Graph-based message communication following Pregel
model

Hama [7]
Graph-based message communication following Pregel
model or direct message communication between
workers

GraphLab
(Dato)

[8, 9, 10]

Graph-based communication through caching and
fetching of ghost vertices and edges or the
communication between master vertex and its replicas
in Power-Graph (GAS) model

GraphX [11] Graph-based communication supports Pregel model
and PowerGraph model
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An Example of Chain Broadcast
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Research Challenges

Unite collective communication abstractions from different tools
Each tool has its own computation model, data and communication
abstractions
Provide a horizontally abstracted collective communication layer

Optimize collective communication operations
Naive implementation could harm the performance
Optimized implementation

Match collective communication to machine learning applications
Each machine learning application has its own features of model
synchronization
Find suitable operations or provide suitable abstractions
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Contributions

• A collective communication abstraction layer
with data abstractions and communication abstractions

• A MapCollective programming model
on top of the communication abstraction layer
allows users to invoke collective communication operations to
synchronize parallel workers.

• A communication library
Hadoop plug-in
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The Concept of Harp Plug-in

Shuffle
M M M M

Collective Communication

M M M M

R R

MapCollective ModelMapReduce Model

YARN

MapReduce V2

Harp

MapReduce Applications
MapCollective
Applications

Application

Framework

Resource Manager

Architecture

Parallelism Model
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Collective Communication Abstractions

Hierarchical Data Abstractions
• → as arrays, key-values, or edges and messages in graphs
• ↑ from basic types to partitions and tables

Key-Value Partition

Array

Transferable

Key-ValuesVerticesDouble 
Array

Int 
Array

Long 
Array

Array Partition
<Array Type>

Struct
Object

Array Table 
<Array Type>

Tuple Partition

Key-Value Table

Byte 
Array

Message 
Table

Edge
Table

Broadcast, Send

Broadcast, Reduce, Allgather, Allreduce, Regroup, 
Synchronized communication on graph or local/global data

Table

Partition

Basic Types

Edges, 
Messages

Broadcast, Send
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Collective Communication Abstractions

Collective Communication Operations

• Collective communication adapted from MPI operations [12]
“broadcast”
“reduce”
“allgather”
“allreduce”

• Collective communication derived from MapReduce “shuffle-reduce”
operation

“regroup” operation with “combine & reduce” support

• Collective communication based on graph
“send messages to vertices”

• Collective communication abstracted from data parallelism and model
parallelism in machine learning applications

data parallelism through “syncLocalWithGlobal” and
“syncGlobalWithLocal”
model parallelism through “rotateGlobal”
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Collective Communication Abstractions

Collective Communication Operations (cont’d)

Operation Algorithm Time Complexity

broadcast chain nβ
minimum spanning tree (log2 p)nβ

reduce minimum spanning tree (log2 p)nβ
allgather bucket pnβ

allreduce bi-directional exchange (log2 p)nβ
regroup-allgather 2nβ

regroup point-to-point direct sending nβ

send messages to vertices point-to-point direct sending nβ

syncLocalWithGlobal point-to-point direct sending
plus routing optimization pnβ

syncGlobalWithLocal point-to-point direct sending
plus routing optimization nβ

rotateGlobal direct sending between
neighbors nβ

Note in Column “Time Complexity”, p is the number of processes, n is the number of input data items
per worker, β is the per data item transmission time, communication startup time α is neglected and
the time complexity of the “point-to-point direct sending” algorithm is estimated regardless of potential
network conflicts.
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Collective Communication Abstractions

MapCollective Programming Model

• BSP style
each worker is deployed on a compute node

• Separate inter-node parallelism and intra-node parallelism
This is a world of “big” machines!
inter-node

I use collective communication to synchronize parallel workers
intra-node

I parallel threads with running state control
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Layered Architecture

Layered Architecture

MapReduce

Collective Communication Abstractions

MapCollective Programming Model

Machine Learning Applications

Collective Communication 
Operators

Hierarchical Data Types 
(Tables & Partitions)

Memory Resource 
Pool

Collective Communication 
APIs

Array, Key-Value, Graph
Abstractions

MapCollective Interface

Task Management
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Machine Learning Applications Implemented in Harp

Application Model Size Model
Dependency Parallelism Communication

K-means
Clustering

[13]

Usually in MB level,
but can grow to GB
level

All Data
Parallelism allreduce

WDA-
SMACOF

[14]
A few MBs All Data

Parallelism allgather & allreduce

LDA [15]
From a few GBs to
10s of GBs, or even
larger

Partial
Data

Parallelism
syncGlobalWithLocal &

syncLocalWithGlobal
Model

Parallelism rotateGlobal

Note: “model dependency” refers to the model data requirement in each local computation. “all” means
the local computation needs all the model data. “partial” means local computation may not need all
the model data. In “parallelism”, “Data Parallelism” means only the training data are split among
parallel workers, and each worker computes on a local model and updates it through the global model
synchronization with other workers. “Model Parallelism” means in addition to splitting the training
data over parallel workers, the global model data is split between parallel workers and rotated during
computation.
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K-means Clustering & WDA-SMACOF

K-means Clustering

• Clustering 500 million 3D points into 10 thousand clusters
The input data is about 12GB
The ratio of points to clusters is 50000:1

• Clustering 5 million 3D points into 1 million clusters
The input data size is about 120MB
The ratio of points to clusters is 5:1
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K-means Clustering & WDA-SMACOF

WDA-SMACOF

• SMACOF (Scaling by MAjorizing a COmplicated Function)
minimizes the difference between distances from points in the original
space and their distances in the new space through iterative stress
majorization

• WDA-SMACOF is an improved version of the original SMACOF
deterministic annealing
conjugate gradient
nested iterations
“allgather” and “allreduce”

• Runs with 100K, 200K, 300K and 400K points
each point represents a gene sequence [16]
100K - 140GB
200K - 560GB
300K - 1.3TB
400K - 2.2TB
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K-means Clustering & WDA-SMACOF

Test Environment

• Big Red II [17]
“cpu” queue
maximum number of nodes per job submission - 128
each node has 32 threads and 64GB memory
Cluster Compatibility Mode
connected with Cray Gemini interconnect
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K-means Clustering & WDA-SMACOF

Performance Results
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LDA

Gibbs Sampling in LDA

• Observed data: Wij , word on position i in doc j
• Try to estimate the latent variables (Model Data)

Zij , topic assignment accordingly to Wij
Nwk , count matrix for word-topic distribution
Nkj , count matrix for topic-document distribution

• With parameters
Concentration Parameters - α, β, control model sparseness
D documents, V vocabulary size, K topics

W1,1

Nkj

Nwk

K*D
V*K

Wn,1
Wi,1

Zn,D

Zi,j

Z1,1
Zn,1

Wi,1

Wn,D

Wi,j

W1,1
Wn,1
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LDA

Gibbs Sampling in LDA (cont’d)

Initialize:
sample topic index zij = k ∼ Mult(1/K )

Repeat until converge:
for all documents j ∈ [1,D] do

for all words position i ∈ [1,Nm] in document j do
// for the current assignment k to a token t of word wij , decrease counts
nkj −= 1; ntk −= 1;
// multinomial sampling
sample new topic index
k ′ ∼ p(zij |z¬ij ,w) ∝ N¬ij

wk +β∑
w

N¬ij
wk +V β

(
N¬ij

kj + α
)

// for the new assignment k′ to the token t of word wij , increase counts
nk′j += 1; ntk′ += 1;
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LDA

Data Parallelism vs. Model Parallelism in LDA

Training Data 1

Local Model

Global Model

Training Data 2

Local Model

Training Data 3

Local Model

Training Data 4

Local Model

Worker

Training Data 1

Global Model 1

Training Data 2

Global Model 2

Training Data 3

Global Model 3

Training Data 4

Global Model 4

Data Parallelism

Worker Worker Worker

Model Parallelism

WorkerWorker Worker Worker

Model Data Update between 
Parallel Workers or Client/Server

Global Model Rotation
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LDA

Synchronized Method vs. Asynchronous Method in LDA

Sample 
a word

Sample 
a word

Send the word

Send the word

Sample words

Sample words

Update words

Update words

Sample 
a word

Sample 
a word

Send the word

Send the word

Asynchronous Communication Synchronized Communication

Time

Threading Computation Communication

Sample words

Update words

Sample 
a word

Sample 
a word

Send the word

Send the word
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LDA

LDA Work Using CGS Algorithm

Application Algorithm Parallelism Communication

PLDA [18] CGS [19] (sample by
docs) D. P. allreduce (sync)

Dato [20] CGS (sample by
doc-word edge) D. P. GAS (sync)

Yahoo! LDA [21, 22] CGS (SparseLDA [23]
& sample by docs) D. P. client-server (async)

Peacock [24] CGS (SparseLDA &
sample by words) D. P. (M. P. in local) client-server (async)

Parameter Server [25] CGS (combined with
other methods) D. P. client-server (async)

Petuum 0.93 [26] CGS (SparseLDA &
sample by docs) D. P. client-server (async)

Petuum 1.1 [27, 28] CGS (SparseLDA &
sample by words) M. P. (include D. P.) ring/star topology

(async)
Note: “D. P.” refers to Data Parallelism. “M. P.” refers to Model Parallelism.
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LDA

Power-law Distribution
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LDA

LDA Implementations

Training Data

1 Load

WorkerWorkerWorker

Sync

4

Global 
Model 2

Compute

2

Global 
Model 3

Compute

2

Global 
Model 1

Compute

2

33 SyncSync3

Iteration

Local 
Model

Local 
Model

Local 
Model

WorkerWorkerWorker

Rotate

Global 
Model 2

Compute

2

Global 
Model 3

Compute

2

Global 
Model 1

Compute

2

33 RotateRotate3

lda-lgs
(use syncLocalWithGlobal
& syncGlobalWithLocal)

lda-rtt
(use rotateGlobal)
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LDA

Test Environment in LDA Experiments

• Juliet Intel Haswell cluster [29]
32 nodes each with two 18-core 36-thread Xeon E5-2699
processors and 96 nodes each with two 12-core 24-thread Xeon
E5-2670 processors.
128GB memory
network - 1Gbps Ethernet (eth) and Infiniband (ib)

• In LDA experiments...
31 nodes with Xeon E5-2699 and 69 nodes with Xeon E5-2670
are used to form a cluster of 100 nodes with 40 threads
use ib in default
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LDA

Training Datasets Used In LDA Experiments

• The total number of model parameters is kept as 10 billion
on all the datasets.

Dataset enwiki clueweb bi-gram gutenberg
Num. of Docs 3.8M 50.5M 3.9M 26.2K
Num. of Tokens 1.1B 12.4B 1.7B 836.8M
Vocabulary 1M 1M 20M 1M
Doc Len. AVG/STD 293/523 224/352 434/776 31879/42147
Highest Word Freq. 1714722 3989024 459631 1815049
Lowest Word Freq. 7 285 6 2
Num. of Topics 10K 10K 500 10K
Init. Model Size 2.0GB 14.7GB 5.9GB 1.7GB
Note: Both “enwiki” and “bi-gram” are English articles from Wikipedia [30]. “clueweb” is a 10%
dataset from ClueWeb09, which is a collection of English web pages [31]. “gutenberg” is comprised
of English books from Project Gutenberg [32].
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LDA

Implementations Used In LDA Experiments

DATA PARALLELISM

lgs - “lda-lgs” impl. with no routing optimization
- Slower than “lgs-opt”

lgs-opt - “lgs” with routing optimization
- Faster than Yahoo! LDA on “enwiki” with higher model likelihood

lgs-opt-4s

- “lgs-opt” with 4 rounds of model synchronization per iteration; each round
uses 1/4 of the training data
- Performance comparable to Yahoo! LDA on “clueweb” with higher model
likelihood

Yahoo! LDA - Master branch on GitHub [33]
MODEL PARALLELISM

rtt
- “lda-rtt” impl.
- Speed comparable with Petuum on “clueweb” but 3.9 times faster on “bi-
gram” and 5.4 times faster on “gutenberg”

Petuum - Version 1.1 [34]
Note: Proposed implementations are indicated in bold.
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LDA Model Convergence Speed Per Iteration
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LDA Data Parallelism on “clueweb”
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LDA Data Parallelism on “enwiki”
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LDA Model Parallelism on “clueweb”
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Conclusion

• Collective communication is essential to the performance of
model synchronization in the machine learning applications.
• The research on LDA shows that improving the efficiency of

model synchronization allows the model to converge faster,
shrink the model size, and further reduce the later
computation time.
• In future work, it is expected to improve the performance of

other machine learning applications through applying the
collective communication abstraction on the model
synchronization.
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