
Twister4Azure 

 Familiar MapReduce programming model 

 Fault Tolerance features  similar to traditional MapReduce. 

 No single point of failure. 

 Combiner step 

 Supports dynamically scaling up and down of the 
compute resources. 

 Web based monitoring console 

 Easy testing and deployment using Azure local 
development fabric. 
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Introduction 

There exists many algorithms that rely on iterative 
computations, where each iterative step can be easily 
specified as a MapReduce computation. MapReduceRoles 
for Azure (MR4Azure) is a decentralized, dynamically 
scalable MapReduce runtime we developed for Windows 
Azure Cloud platform using Microsoft Azure cloud 
infrastructure services as the building blocks. 
Twister4Azure extends MR4Azure to support optimized 
iterative MapReduce executions, enabling a wide array of 
large scale iterative data analysis and scientific 
applications to utilize Azure platform easily and efficiently.   

 

 

 

 

 

 

 

 

 

 

 

Performance Comparison 
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KMeans iterative MapReduce 
performance. 16 Azure Small 
instances, 6 iterations, 8 to 48 
million 20-D data points. 

  
Left: Performance with and 
without data caching.  
Right: Speedup obtained from 
using the data cache 
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A Decentralized, Dynamically Scalable, Fault Tolerant Iterative MapReduce Framework Built Using Cloud Services for Microsoft Azure Cloud. 

Twister4Azure Computation Flow 
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CAP3 Sequence Assembly  
Using Azure Small instances for Twister4Azure, 
Amazon EC2 High-CPU-Extra-Large instances for 
Amazon Elastic MapReduce and 8 core 16GB per 
node cluster for Apache Hadoop.  Each file 
contained 458 reads. 
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MapReduceRoles for Azure 

 Use distributed, highly scalable and highly 
available  cloud services as the building blocks. 

 Azure Queues for task scheduling. 

 Azure Blob storage for input, output and 
intermediate data storage. 

 Azure Tables for meta-data storage and 
monitoring 

 Utilize eventually-consistent , high-latency  cloud 
services effectively to deliver performance 
comparable to traditional MapReduce runtimes. 

 Minimal management and maintenance overhead 

 

 Iterative extensions  

 Merge Step 

 In-Memory Caching of 
static data 

 Cache aware hybrid 
scheduling using Queues 
as well as a bulletin 
board (special table)  
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Left: Scaling speedup 
with increasing number 
of instances (Azure 
Small) & data for 10 
iterations. 
Right: Increasing number 
of iterations using 16 
million data points with 
caching using 16 Azure 
Small instances. 

BLAST 

NCBI BLAST+ sequence searching using NR protein 
sequence database (~8.7 GB) using 128 CPU cores. 16 
Extra-Large Azure instances were used for 
Twister4Azure. 8-core 16GB memory per node cluster  
was used Apache Hadoop.  16-core 16GB memory 
per node Windows HPC cluster was used for 
DryadLINQ testing. Each query file == 100 sequences.  

Smith Waterman-GOTOH All-Pairs Sequence 
Alignment 

Azure Small instances for Twister4Azure, Amazon EC2 
High-CPU-Extra-Large instances for Amazon Elastic 
MapReduce and 8 core 16GB per node cluster for 
Apache Hadoop. Block == 200 sequences. 

  

 


