
Twister4Azure

 Familiar MapReduce programming model

 Fault Tolerance features similar to traditional MapReduce.

 No single point of failure.

 Combiner step

 Supports dynamically scaling up and down of the
compute resources.

 Web based monitoring console

 Easy testing and deployment using Azure local
development fabric.

Twister4Azure : Iterative MapReduce for Azure Cloud

Thilina Gunarathne, Judy Qiu, Geoffrey Fox
{tgunarat, xqiu, gcf}@indiana.edu

http://salsahpc.indiana.edu/twister4azure

Introduction

There exists many algorithms that rely on iterative
computations, where each iterative step can be easily
specified as a MapReduce computation. MapReduceRoles
for Azure (MR4Azure) is a decentralized, dynamically
scalable MapReduce runtime we developed for Windows
Azure Cloud platform using Microsoft Azure cloud
infrastructure services as the building blocks.
Twister4Azure extends MR4Azure to support optimized
iterative MapReduce executions, enabling a wide array of
large scale iterative data analysis and scientific
applications to utilize Azure platform easily and efficiently.

Performance Comparison

Reduce

Reduce

Merge
Add

Iteration? No

Map Combine

Map Combine

Map Combine

Data Cache

Yes

Hybrid scheduling of the new iteration

Job Start

Job Finish

K-Means Clustering

KMeans iterative MapReduce
performance. 16 Azure Small
instances, 6 iterations, 8 to 48
million 20-D data points.

Left: Performance with and
without data caching.
Right: Speedup obtained from
using the data cache

Map
1

Map
2

Map
n

Map Workers

Red
1

Red
2

Red
n

Reduce Workers

In Memory Data Cache

Task Monitoring

Role Monitoring

Worker Role

MapID ……. Status

Map Task Table

MapID ……. Status

Job Bulleting Board

Scheduling Queue

A Decentralized, Dynamically Scalable, Fault Tolerant Iterative MapReduce Framework Built Using Cloud Services for Microsoft Azure Cloud.

Twister4Azure Computation Flow

REFERENCES

Gunarathne, T., Wu,T.L., Qiu, J., and Fox, G.C. 2010. MapReduce in the Clouds for Science. In Proceedings of
CloudCom 2010 Conference (Indianapolis,December 2010)

Ekanayake, J., Li, H., Zhang B., et al., 2010. Twister: A Runtime for iterative MapReduce, in Proceedings of the First
International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference (Chicago, June 2010)

Gunarathne, T., Wu, T. L., Qiu, J., et al., 2010. Cloud computing paradigms for pleasingly parallel biomedical
applications. Submitted for publication in Concurrency and Computation: Practice and Experience journal.

ACKNOWLEDGEMENTS
Microsoft Exploratory Research in Clouds and Platforms Grant, FutureGrid and Salsa Group.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

128 228 328 428 528 628 728

Pa
ra

lle
l E

ff
ic

ie
nc

y

Number of Query Files

Twister4Azure

Hadoop-Blast

DryadLINQ-Blast

CAP3 Sequence Assembly
Using Azure Small instances for Twister4Azure,
Amazon EC2 High-CPU-Extra-Large instances for
Amazon Elastic MapReduce and 8 core 16GB per
node cluster for Apache Hadoop. Each file
contained 458 reads.

0

500

1000

1500

2000

2500

3000

A
d

ju
st

e
d

 T
im

e
 (

s)

Num. of Cores * Num. of Blocks

Twister4Azure

Amazon EMR

Apache Hadoop

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

P
a

ra
ll

e
l

E
ff

ic
ie

n
cy

Num. of Cores * Num. of Files

Twister4Azure

Amazon EMR

Apache Hadoop

MapReduceRoles for Azure

 Use distributed, highly scalable and highly
available cloud services as the building blocks.

 Azure Queues for task scheduling.

 Azure Blob storage for input, output and
intermediate data storage.

 Azure Tables for meta-data storage and
monitoring

 Utilize eventually-consistent , high-latency cloud
services effectively to deliver performance
comparable to traditional MapReduce runtimes.

 Minimal management and maintenance overhead

 Iterative extensions

 Merge Step

 In-Memory Caching of
static data

 Cache aware hybrid
scheduling using Queues
as well as a bulletin
board (special table)

0%

20%

40%

60%

80%

100%

120%

140%

160%

0

200

400

600

800

1000

1200

1400

1600

8 X 16M 16 X 32M 32 X 64M 48 X 96M 64 X 128M

R
e

la
ti

ve
 P

a
ra

ll
e

l E
ff

ic
ie

n
cy

T
im

e
 (

s)

Num Instances X Num Data Points

Relative Parallel
Efficiency

Time(s)

Left: Scaling speedup
with increasing number
of instances (Azure
Small) & data for 10
iterations.
Right: Increasing number
of iterations using 16
million data points with
caching using 16 Azure
Small instances.

BLAST

NCBI BLAST+ sequence searching using NR protein
sequence database (~8.7 GB) using 128 CPU cores. 16
Extra-Large Azure instances were used for
Twister4Azure. 8-core 16GB memory per node cluster
was used Apache Hadoop. 16-core 16GB memory
per node Windows HPC cluster was used for
DryadLINQ testing. Each query file == 100 sequences.

Smith Waterman-GOTOH All-Pairs Sequence
Alignment

Azure Small instances for Twister4Azure, Amazon EC2
High-CPU-Extra-Large instances for Amazon Elastic
MapReduce and 8 core 16GB per node cluster for
Apache Hadoop. Block == 200 sequences.

