A Semi-Automatic Approach for Estimating Near Surface Internal Layers From Snow Radar Imagery

Jerome E. Mitchell, David J. Crandall, Geoffrey C. Fox, John D. Paden

> IGARSS 2013 Session FR2.105 – Image Processing I Melbourne, Australia

Center for Remote Sensing of Ice Sheets

CReSIS Instruments

Instrument	Measurement	Freq./ Wavelength	BW/ Res.	Depth	Power	Altitude	Antenna	Installs
HF Sounder Under development	Ice Thickness	14 MHz 35 MHz	1 MHz 5 MHz	3 km	100 W	TBD	Dual-Freq Dipole	Yak Small UAV
UWB Radar Under development	Ice Thickness Int. Layering Bed Properties	Adjustable 350 MHz	Up to 450 MHz	4 km	800 W	TBD	Array	Basler
MCoRDS/I Radar Depth Sounder	Ice Thickness Int. Layering Bed Properties	195 MHz 1.5 m	30 MHz 4 m	4 km	800 W	30000 ft	Dipole Array Wing Mount Fuslage	Twin-Otter P-3 DC-8
Accum. Radar	Internal Layering Ice Thickness	750 MHz 40 cm	300 MHz 40 cm	300 m	10 W	20000 ft	Patch Array Vivaldi Array	Twin-Otter P-3
Snow Radar	Snow Cover Topography Layering	5 GHz 7.5 cm	6 GHz 4 cm	80 m	200 mW	30000 ft	Horn	P-3 DC-8
Ku-Band	Topography Layering	15 GHz 2 cm	6 GHz 4 cm	15 m	200 mW	20000 ft	Horn	Twin-Otter DC-8

Overview

- Introduction
- Related Literature
- Methodology
- Application
 - near surface internal layers
- Conclusion
- Future Work

Introduction

- The Problem
- Understanding Layers in the radar images:
 - helps compute the ice thickness and accumulation rate maps
 - help studies relating to the ice sheets, their volume, and how they contribute to climate change.
- Develop an automated tool for tracing Layers in radar imagery

Related Literature

- Internal Layers
 - Fahnestock et al (2001)
 - Cross-correlation and a peak-finding routine to detect internal layers in northern Greenland
 - Karlsson et al (2012)
 - Ramp-based approach for predicting near surface layers
 - Sime et al (2011)
 - Developed a technique to obtain layer dip information

Active Contours Models

- Active contour models, computer generated curves, which move within images to detect object boundaries
- Used in Image Segmentation
- Examples
 - Level Sets, Intelligent Scissors, Snakes

Estimating Near Surface Internal Layers

Quality Issues

- Backscatter introduces clutter
- Near Surface Internal Layers
 - Fuse into Layers
 - Dis/Reappear
- Near Surface Internal Layer intensity decrease as depth increases

- Gaps in the bottom lower portion of echogram

Snakes

 A snake is defined in the (x,y) plane of an image as a parametric curve

 $v(s) = (x(s), y(s)), s \in [0,1]$

• A contour has an energy (E_{snake}) , which is defined as the sum of the three energy terms.

$$E_{snake} = \int (\alpha E_{elastic(v(s))} + \beta E_{bending(v(s))} + \gamma E_{image(v(s))}) ds$$

Detecting Layers reduces to an energy minimization problem.

- 1. Identify Ice Surface
- 2. Classify Curve Points
- 3. Active Contours (Snakes)

- 1. Identify Ice Surface
- 2. Classify Curve Points
- 3. Active Contours (Snakes)

- 1. Identify Ice Surface
- 2. Classify Curve Points
- 3. Active Contours (Snakes)

- 1. Identify Ice Surface
- 2. Classify Curve Points
- 3. Active Contours (Snakes)

Original Echogram

Detected Near Surface Internal Layers Echogram

Original Echogram

Detected Near Surface Internal Layers Echogram

Conclusion

- Identified Near Surface Internal Layers
 - Semi automated approach requires specifying a global parameter for determining number of visible layers
 - 2011 Antarctica snow radar echograms

Future Work

- Improve near surface layer detection algorithms for more data products
 - learning algorithms
 - incorporate meta data
 - identify non layers
- Physical Optimization
 - Apply snakes simultaneously while using repulsive terms

Questions

