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Architecture of a Deep Learning System



Motivation
Designing systems to solve problems on its own by learning through experience 
and memory. 



Objective
● Understand deep learning systems.
● How big data systems helps to drive deep learning systems?
● Analyze current trends in Academic and Industry research on deep learning 

systems.



Overview
● Introduction to AI Systems
● Big data systems design for specific AI use-cases
● Research on AI Systems
● Design Systems for Generic AI Systems
● Conclusion. 
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Data Organization

Identification Preparation Ingestion Storage

Kafka, RabitMQ, 
ZeroMQ, Redis, 
MongoDB,Oracle 
SQL, MySQL, etc

Spark Structured 
Streaming, Spark SQL, 
Apache Calcite, Apache 
Storm, Apache Flink, 
Twister2 Streaming.

PCA, T-Distributed 
Stochastic Neighbor 
Embedding, Deep 
Learning 
AutoEncoders

Parquet, Apache 
Arrow, Apache 
Avro, Oracle SQL, 
MongoDB, etc. 



AI Workflow
AI Training: Machine learning and deep learning systems training with organized 
data. For reinforcement learning evaluating inputs from the environments and 
deciding actions. [CPU, GPU, TPU]

AI Testing: Evaluating the AI algorithm against the expected goal.

 

AI Deployment: Deploying trained system to electronic devices. [Android, IOS, 
Raspberry PI, Edge TPU, Jetson, etc]



AI Training and Evaluation



AI Deployment

Jetson Nano

Edge TPU Accelerator

Raspberry PI

Edge Dev Board

Jetson TX2



So Far the Discussion
● Introduction to AI Systems
● Big data systems design for specific AI use-cases
● Research on AI Systems
● Conclusion. 



Big Data System Design For AI
Training Systems

Predictive Systems
Transfer Learning Systems



Training Systems
● Data pipelining (training data stream or batch, testing data stream or batch, 

cross-validation data stream or batch)
● Batch and Stream processing on raw data

○ Apache Spark, Apache Storm, Apache Flink, Twister, Twister2, etc

● In memory and disk based data processing capability
○ Parquet, Apache Arrow, Apache Avro, etc

● Distributed Training Support and Collective Communication
○ MPI, Harp, Twister2

● Hybrid system design on HPC and Big Data frameworks. 
○ Spark + MPI, Twister2

 



Predictive Systems
● Data pipelining (From storage or message brokers)

○ Streams (windowing for mini-batches)
○ Batches 

● Storage
○ In memory-based or disk-based

● New Model update mechanisms 
○ Manage model update over large number of devices

● Support Edge devices for low-latency inference
○ Edge TPU, Edge GPU, Edge CPU

● Collective Communication
○ Data gather, broadcast, reduce, shuffle, etc. 



Transfer Learning 
● Workflow connecting training and predictive systems

○ Model management for multiple experimentation configurations and keeping track on model 
specification (Supported by Azure ML)

● Existing model is re-used to train for a specified purpose supported by the 
existing knowledge on the model. 

○ This requires the re-use of training system and predictive system. 

● Workflow management is vital when thousands of models are being managed 
for different purposes. A well defined workflow system is highly influential in 
streamlined model deployment. 



So far the discussion
● Introduction to AI Systems
● Big data systems design for specific AI use-cases
● Research on AI Systems
● Design Systems for a generic AI System
● Conclusion. 



Research on AI Systems
Digital Advisors

Gaming



Gaming with AI
● Alpha Zero is the generalized 

version of AI game player to 
master more board games. 

● It has played Sogi (Japanese 
Chess), Chess and Go.

○ Stockfish Engine for Chess
○ Elmo Engine for Sogi
○ Alpha Zero for all

● Facebook created an AI 
Poker agent beating 
professional poker players. 

● OpenAI Dota 



Digital Advisor’s Capabilities
● A voice-enabled agent which performs defined tasks. 
● Specific Capabilities

○ Audio generation
○ Text generation
○ Image generation 
○ Search

● Continuous speech 
● Autonomous answering

○ Capability to engage in a conversation with a human. 

● Examples:
○ Alexa
○ Google Assistant
○ Cortana



System Design for a Generic AI System
Unified Data Analytics

Deep Learning System Support
Optimizing Systems for Scaling

Breaching the Language Boundary



Unified Data Analytics
● Unified data processing engine for Batch and Stream processing
● Google Dataflow is powered by PCollections and Other libraries in Apache 

Beam
● Supports SQL, Large batch jobs and long running stream jobs

○ Special support for Session based log processing at scale

● Apache Flink, Apache Spark also provides runners to run their jobs using 
Beam. 

● Twister2 is a batch and stream processing unified framework running MPI, 
TCP and UCX modes with high scalability and performance. 

● Harp provides a collective communication API on Java for application 
developers to run efficient code 

○ Supports Intel DAAL and enables Deep Learning and Machine Learning on Intel Hardware



Deep Learning Support
● Dynamic Graph Structure support in Pytorch provides distributed training on 

both model and data parallelism at scale. 
○ Uses MPI, Gloo, TPC modes to run distributed training on CPU, GPU and TPU. 

● Tesla Hydra nets supported with Distributed Training systems designed on 
MPI backends with PyTorch. 

● Apache Spark provides support for Tensorflow, Pytorch, MXNet with Data 
preprocessing and distributed training. 

○ Horovod from Uber is one such implementation using MPI for distributed training and PySpark 
for data pre-processing at scale. 

● MPI-oriented research with HiDL (D.K Panda’s et.al) provides highly scalable 
training support for Pytorch and Tensorflow. 



Optimizing Systems for Scaling: Spark



Optimizing Systems for Scaling: Containers
● K8s or Kubernetes works on large scale application scaling with containers. 
● K3s is a lightweight Kubernetes version which supports light weight devices 

likes Edge TPUs, Edge GPUs and Raspberry PIs. 



Breaching Language Boundary
● Ultimate goal is to solve problems easily. 

○ One wouldn’t prefer writing more code on environment design, rather interested in data 
analytics and simulation design. 

● Python is the straightforward choice from the research community. 
○ Dask
○ Scikit-Learn
○ Pytorch
○ Tensorflow
○ Parsl
○ EPython

● Core system design is on principles of the state of the art high performance 
big data systems.

● APIs are more readable and easy to code. 



Where does research focus on? 
● Improving systems at scaling

○ Distributed training and testing
○ Edge computing and fast inference on mobile devices

● Design surrogate AI systems to solve existing mathematical and physics 
models with higher efficiency

● Agent training for exceeding human function 
○ Currently in Gaming
○ Translation
○ Voice recognition
○ Image recognition

● Efficient Training and Efficient Inference with decentralization of resources



Conclusion 
● AI Systems needs a major support from high performance big data 

systems (HPBS) for data organization, algorithm training in parallel mode 
and provide services in both cloud and edge devices for deploying AI models. 

● A high performance unified data analytics framework is necessary to design 
intelligent systems with a streamlined workflow when dealing with multiple 
data processing disciplines associated with vivid use cases. 

● Supporting various AI libraries from different vendors is vital when managing a 
larger community of researchers and engineers working on their specialized 
disciplines in various areas of the workflow. 

● Integrating overall AI workflow must be done using HPBS to scale research, 
development and deployment process. 



Deep Learning System Layered Architecture

Training Infrastructure

Software/Hardware Optimization

Inference Infrastructure

Deep Learning Libraries Machine Learning 
Libraries

Data Pipeline, Data Verification, Feature Extraction

Data Processing Layer (SQL)

Data Brokers, HDFS, CSV

Monitoring Systems

Core AI SystemAdjacent Systems

Resource Managers

External APIs
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Distributed SGD-based SVM 



Related Work

● Pegasos SVM
● DC-SVM
● pPackSVM
● Parallel SGD
● Parallel SGD For High Level Architectures 

https://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf
https://arxiv.org/abs/1810.09828
https://cs.stanford.edu/people/cgzhu/paper/icdm2009b.pdf
http://martin.zinkevich.org/publications/nips2010.pdf
https://arxiv.org/pdf/1802.08800.pdf


Objective

● Effect of mini-batch based model synchronization on SGD based SVM 
algorithm convergence.

● Evaluate efficiency of the training model based on execution time and 
testing accuracy upon batch size. 

 



System Architecture



Anatomy of Datasets

DataSet Training Data (60% / 80%) Cross-Validation Data (60% / 80%) Testing Data (60%, 80%) Sparsity(%) Features

Ijcnn1 21,000 / 28,000 7,000 / 3,500 7,000 / 3,500 40.91 22

Webspam 210,000 / 280,000 70,000 / 35,000 70,000 / 35,000 99.9 254

Epsilon 240,000 / 320,000 80,000 / 40,000 80,000 / 40,000 44.9 2000



Objective Function and Equations



Algorithm Implementation

● We used OpenMPI 3.0.0 (C++)
● AllReduce collective was used to do model synchronization and later 

averaging was done over each process.
● Learning rate is an adaptive diminishing function.

○ Function of number of epochs 



Model Synchronization



Cross Validation Accuracy Variation [Sequential 
Mode] - Ijcnn1 Dataset



Training Time Variation 
[Sequential Mode] - Ijcnn1 Dataset

Block Size



Cross-Validation Accuracy Variation Against 
Parallelism - Webspam Dataset



Convergence with Parallelism

Convergence Point



Understanding Performance

● Understanding the performance of the algorithm in terms of parallelism 
level and block size, in terms of times.

○ Time to update one point (0.5625 us/epoch - epsilon x32 b=1)
○ Time to check for convergence (0.375 us/epoch - epsilon x32 b=1) (objective function 

evaluation)
○ Time for MPI collective (3.5625 us/epoch - epsilon x32 b=1) (model synchronization, 

i.e allreduce)



Training Time Breakdown 



Testing Accuracy Variation
IJCNN1 WEBSPAM EPSILON



Summary of Experimental Results

DataSet Sequential Timing (seconds) Parallel Timing (seconds) Speed Up (x1 vs x32)

Ijcnn1 22.19 1.37 16.2

Webspam 2946.49 120.02 24.55

Epsilon 20037.5 968.782 21.12



Experiment Environment

● For this we used Juliet Cluster which is a part of the Future Systems 
cloud environment of Digital Science Center in Indiana University 
Bloomington

● Configuration of a Node in the Cluster
○ Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
○ Cores Per Socket = 18 
○ Sockets = 2
○ Threads Per Core = 2 

https://portal.futuresystems.org/


Extension of Research

● Providing support in both HPC and Dataflow-like computation models. 
● Twister2 SVM (Batch and Streaming (Published Stream-ML, IEEE Big Data 

Dec/2019)) https://twister2.gitbook.io/twister2/examples/ml/svm
● Available With Twister2 0.2.0 release.  [Twister2 is a framework developed by 

Indiana University Bloomington as a  Big Data Hosting Environment: A 
composable framework for high-performance data analytics]

● Twister2 TSet: High Performance Iterative Dataflow ( paper published on May 
10th, 2019) uses this SVM model as an application.

● Currently working on BLAS level and language level optimizations on 
distributed SVM on Java and C++ implementations. 

https://twister2.gitbook.io/twister2/examples/ml/svm
https://twister2.gitbook.io/twister2/release/twister2_release_0_2_0
https://www.researchgate.net/profile/Geoffrey_Fox/publication/332246120_Twister2TSet_High-Performance_Iterative_Dataflow/links/5ca8bc6f4585157bd3263666/Twister2TSet-High-Performance-Iterative-Dataflow.pdf


Conclusion
● Designing a highly scalable SVM algorithm with respect existing 

implementations. 
● Understood the convergence of a distributed machine learning algorithm in 

depth with micro-benchmarking on accuracy and execution time. 

Implementation Type Optimization Model Scalability Implementations

SMO Lagrangian Optimization Low LibSVM (Sequential)

PSVM Matrix Decomposition Moderate PSVM (Google)

SGD-SVM Gradient Descent Variations High Pegasos SVM

PSGD-SVM Parallel SGD Very high pPackSVM

Our HPC 
Implementation

Parallel Pegasos SGD (supports 
BLAS(Java,C++))

Very high PSGDDSVMC, PSGDSVM

Our Hybrid 
Implementation

Parallel SGD (Twister2 [MPI Backend]) Very high Twister-SVM



Summary
● Code

○ OpenMPI C++: https://github.com/vibhatha/PSGDSVMC [Used in Paper]
○ OpenMPI Java: https://github.com/vibhatha/PSGDSVM
○ OpenMPI Python: https://github.com/vibhatha/PSGDSVMPY
○ Twister2: https://twister2.org/docs/examples/ml/svm/svm

● Paper
○ Pre-print: https://arxiv.org/abs/1905.01219

https://github.com/vibhatha/PSGDSVMC
https://github.com/vibhatha/PSGDSVM
https://github.com/vibhatha/PSGDSVMPY
https://twister2.org/docs/examples/ml/svm/svm
https://arxiv.org/abs/1905.01219
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Scientific Image Restoration 
Anywhere



Image Restoration with High Efficiency
● Deep Learning Models are used in most of the scientific experimental 

facilities. The intensity of the usage has highly increased in the recent years. 
● Low Latency inference is one of the highly demanding requests by scientists.
● Once the deep learning models are trained they must be portable such that it 

can be used anywhere with less installation and configuration overheads. 



Objectives
● Faster Inference
● Low Cost Medium for Inference
● Availability for Scientific Applications



Technology Usage and Data Source
● Tensorflow 1.14
● TensorflowLite (Edge Compatible Models)
● TPU Accelerator
● TPU Dev Board
● GPU Accelerator: NVIDIA Jetson
● Low-Dose X-ray images from APS 

(Argonne Photon Source)
TPU Accelerator

Jetson Tx2

TPU Dev Board



Edge TPU Specs

(5V USB Type-C)

Edge TPU Dev Board Edge TPU Accelerator



Ref.: Z. Liu et al. TomoGAN. arXiv:1902.07582

Operations Layers

1x1 conv2D + Relu 3

3x3 Conv2D + Relu 13

Bilinear upsampling 3

Max Pooling 3

Concatenation (Channel Axis) 3

TomoGAN Generator Architecture

For inference, TomoGAN needs 301 Billion 
floating-point operation to denoise an image with 
1024x1024 pixels.



Post Quantization of Training Model [USED IN EXPERIMENTS]

● Fast 
● Model is modified after training (for quantization purpose)
● Works well with smaller and large models
● Trained for 40K epochs (24 hours training time)



Quantization-Aware Training Model

● Very slow
● Model configured with fake quantization layers
● Good for small models (observation with current experiments on GPU 

training)
● 24 hours to train for 1K epochs (low image quality @Testing)



Workflow 1: Inference with CPU

● Use Non-quantized model and do inference on CPU
● Records timing and quality stats
● Uses 1024 x 1024 input image and outputs 1024 x 1024 image



Workflow 2: Inference with GPU

● Non-quantized model converted to GPU compatible quantization model
● Records timing and quality stats
● Uses 1024 x 1024 input image and outputs 1024 x 1024 image
● TensorRT support to run on Edge GPU [Tx2]



Workflow 3: Inference with TPU

● 1024 x 1024 image => 64 x 64 x 256 (256 slices of 64 x 64 images)
● Model Quantization to TPU Compatibility requires a sample dataset. 
● The sample dataset governs the quantization range
● Wrote custom wrapper (Specially for image to image translation) for 

BasicEngine (Tensoflow API modification)(currently not supported as an API 
in Tensorflow)

● Use Interpreter API (Extended API was designed for Image Restoration)



Fine Tune Layer

● Improves the Image Quality
● Shallow CNN Used
● Quantized for Edge-TPU Compatibility



Performance Evaluation on Inference 
● TPU Accelerator is 

much faster than 
CPU 

● TPU Accelerator 
performs faster 
than GPU 
Accelerator. 

● Time taken to 
restore 1024x1014 
image

● Tested for 1024 
image set an 
average timing is 
recorded

Accelerator was mounted on host machine[ i7@2.6GHz]
Accelerator runs on High frequency mode >> Dev board on low frequency mode 



Performance Time Breakdown



Image Quality Evaluation with SSIM
● Structural Similarity 

Index is used. 
● Fine Tune Layer 

improves the 
Quantized model 
up to the image 
quality of a 
non-quantized 
model. 

● Original model 
doesn’t use edge 
an device. It is a 
non-quantized 
model. 



Conclusion
● We design a faster inference workflow to restore scientific images (Edge TPU 

and Edge GPU). 
● Enabled the inference workflow to generate high quality images even after 

quantization. 
● Low cost solution with higher efficiency. 
● High accessibility to scientific application developers. 
● Designed a portable system which can run anywhere.
● First research approach on image translation on Edge TPUs 
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Thank You


