
Qualifying Examination
Presentation

Vibhatha Lakmal Abeykoon
Intelligent Systems Engineering

Luddy School of Informatics, Computing and
Engineering

Academic Advisor: Geoffrey Fox
Advisory Committee: Geoffrey Fox, Judy Qiu, Minje Kim

AI System

Message Brokers Data Storage REST API Data Source Layer

Data Processing LayerBatch Processing Stream Processing

ML Training DL Training RL Training Data Analytics

DeploymentEdge Cloud Mobile

Have Worked On Work In Progress

AI System

Data Source Layer

Data Processing Layer

Data Analytics Layer

Deployment Layer

HDFS, CSV, NPY

Twister2, Spark, Storm, Flink, Harp

SVM, KMeans, GAN, DNN

EDGE [TPU, GPU, CPU]

Scope Covered in Current Research

SVM
Research

Scientific
Image

Restoration
Research

?

Artificial Intelligence
Systems

Architecture of a Deep Learning System

Motivation
Designing systems to solve problems on its own by learning through experience
and memory.

Objective
● Understand deep learning systems.
● How big data systems helps to drive deep learning systems?
● Analyze current trends in Academic and Industry research on deep learning

systems.

Overview
● Introduction to AI Systems
● Big data systems design for specific AI use-cases
● Research on AI Systems
● Design Systems for Generic AI Systems
● Conclusion.

AI System

Deep
Learning

Machine
Learning

Reinforcement
Learning

Workflow System

Data Organization

Identification Preparation Ingestion Storage

Kafka, RabitMQ,
ZeroMQ, Redis,
MongoDB,Oracle
SQL, MySQL, etc

Spark Structured
Streaming, Spark SQL,
Apache Calcite, Apache
Storm, Apache Flink,
Twister2 Streaming.

PCA, T-Distributed
Stochastic Neighbor
Embedding, Deep
Learning
AutoEncoders

Parquet, Apache
Arrow, Apache
Avro, Oracle SQL,
MongoDB, etc.

AI Workflow
AI Training: Machine learning and deep learning systems training with organized
data. For reinforcement learning evaluating inputs from the environments and
deciding actions. [CPU, GPU, TPU]

AI Testing: Evaluating the AI algorithm against the expected goal.

AI Deployment: Deploying trained system to electronic devices. [Android, IOS,
Raspberry PI, Edge TPU, Jetson, etc]

AI Training and Evaluation

AI Deployment

Jetson Nano

Edge TPU Accelerator

Raspberry PI

Edge Dev Board

Jetson TX2

So Far the Discussion
● Introduction to AI Systems
● Big data systems design for specific AI use-cases
● Research on AI Systems
● Conclusion.

Big Data System Design For AI
Training Systems

Predictive Systems
Transfer Learning Systems

Training Systems
● Data pipelining (training data stream or batch, testing data stream or batch,

cross-validation data stream or batch)
● Batch and Stream processing on raw data

○ Apache Spark, Apache Storm, Apache Flink, Twister, Twister2, etc

● In memory and disk based data processing capability
○ Parquet, Apache Arrow, Apache Avro, etc

● Distributed Training Support and Collective Communication
○ MPI, Harp, Twister2

● Hybrid system design on HPC and Big Data frameworks.
○ Spark + MPI, Twister2

Predictive Systems
● Data pipelining (From storage or message brokers)

○ Streams (windowing for mini-batches)
○ Batches

● Storage
○ In memory-based or disk-based

● New Model update mechanisms
○ Manage model update over large number of devices

● Support Edge devices for low-latency inference
○ Edge TPU, Edge GPU, Edge CPU

● Collective Communication
○ Data gather, broadcast, reduce, shuffle, etc.

Transfer Learning
● Workflow connecting training and predictive systems

○ Model management for multiple experimentation configurations and keeping track on model
specification (Supported by Azure ML)

● Existing model is re-used to train for a specified purpose supported by the
existing knowledge on the model.

○ This requires the re-use of training system and predictive system.

● Workflow management is vital when thousands of models are being managed
for different purposes. A well defined workflow system is highly influential in
streamlined model deployment.

So far the discussion
● Introduction to AI Systems
● Big data systems design for specific AI use-cases
● Research on AI Systems
● Design Systems for a generic AI System
● Conclusion.

Research on AI Systems
Digital Advisors

Gaming

Gaming with AI
● Alpha Zero is the generalized

version of AI game player to
master more board games.

● It has played Sogi (Japanese
Chess), Chess and Go.

○ Stockfish Engine for Chess
○ Elmo Engine for Sogi
○ Alpha Zero for all

● Facebook created an AI
Poker agent beating
professional poker players.

● OpenAI Dota

Digital Advisor’s Capabilities
● A voice-enabled agent which performs defined tasks.
● Specific Capabilities

○ Audio generation
○ Text generation
○ Image generation
○ Search

● Continuous speech
● Autonomous answering

○ Capability to engage in a conversation with a human.

● Examples:
○ Alexa
○ Google Assistant
○ Cortana

System Design for a Generic AI System
Unified Data Analytics

Deep Learning System Support
Optimizing Systems for Scaling

Breaching the Language Boundary

Unified Data Analytics
● Unified data processing engine for Batch and Stream processing
● Google Dataflow is powered by PCollections and Other libraries in Apache

Beam
● Supports SQL, Large batch jobs and long running stream jobs

○ Special support for Session based log processing at scale

● Apache Flink, Apache Spark also provides runners to run their jobs using
Beam.

● Twister2 is a batch and stream processing unified framework running MPI,
TCP and UCX modes with high scalability and performance.

● Harp provides a collective communication API on Java for application
developers to run efficient code

○ Supports Intel DAAL and enables Deep Learning and Machine Learning on Intel Hardware

Deep Learning Support
● Dynamic Graph Structure support in Pytorch provides distributed training on

both model and data parallelism at scale.
○ Uses MPI, Gloo, TPC modes to run distributed training on CPU, GPU and TPU.

● Tesla Hydra nets supported with Distributed Training systems designed on
MPI backends with PyTorch.

● Apache Spark provides support for Tensorflow, Pytorch, MXNet with Data
preprocessing and distributed training.

○ Horovod from Uber is one such implementation using MPI for distributed training and PySpark
for data pre-processing at scale.

● MPI-oriented research with HiDL (D.K Panda’s et.al) provides highly scalable
training support for Pytorch and Tensorflow.

Optimizing Systems for Scaling: Spark

Optimizing Systems for Scaling: Containers
● K8s or Kubernetes works on large scale application scaling with containers.
● K3s is a lightweight Kubernetes version which supports light weight devices

likes Edge TPUs, Edge GPUs and Raspberry PIs.

Breaching Language Boundary
● Ultimate goal is to solve problems easily.

○ One wouldn’t prefer writing more code on environment design, rather interested in data
analytics and simulation design.

● Python is the straightforward choice from the research community.
○ Dask
○ Scikit-Learn
○ Pytorch
○ Tensorflow
○ Parsl
○ EPython

● Core system design is on principles of the state of the art high performance
big data systems.

● APIs are more readable and easy to code.

Where does research focus on?
● Improving systems at scaling

○ Distributed training and testing
○ Edge computing and fast inference on mobile devices

● Design surrogate AI systems to solve existing mathematical and physics
models with higher efficiency

● Agent training for exceeding human function
○ Currently in Gaming
○ Translation
○ Voice recognition
○ Image recognition

● Efficient Training and Efficient Inference with decentralization of resources

Conclusion
● AI Systems needs a major support from high performance big data

systems (HPBS) for data organization, algorithm training in parallel mode
and provide services in both cloud and edge devices for deploying AI models.

● A high performance unified data analytics framework is necessary to design
intelligent systems with a streamlined workflow when dealing with multiple
data processing disciplines associated with vivid use cases.

● Supporting various AI libraries from different vendors is vital when managing a
larger community of researchers and engineers working on their specialized
disciplines in various areas of the workflow.

● Integrating overall AI workflow must be done using HPBS to scale research,
development and deployment process.

Deep Learning System Layered Architecture

Training Infrastructure

Software/Hardware Optimization

Inference Infrastructure

Deep Learning Libraries Machine Learning
Libraries

Data Pipeline, Data Verification, Feature Extraction

Data Processing Layer (SQL)

Data Brokers, HDFS, CSV

Monitoring Systems

Core AI SystemAdjacent Systems

Resource Managers

External APIs

AI System

Data Source Layer

Data Processing Layer

Data Analytics

Deployment

HDFS, CSV, NPY

Twister2, Spark, Storm, Flink, Hadoop

SVM, KMeans, GAN, DNN

EDGE [TPU, GPU, CPU]

Scope Covered in Current Research

SVM
Research

Scientific
Image

Restoration
Research

Distributed SGD-based SVM

Related Work

● Pegasos SVM
● DC-SVM
● pPackSVM
● Parallel SGD
● Parallel SGD For High Level Architectures

https://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf
https://arxiv.org/abs/1810.09828
https://cs.stanford.edu/people/cgzhu/paper/icdm2009b.pdf
http://martin.zinkevich.org/publications/nips2010.pdf
https://arxiv.org/pdf/1802.08800.pdf

Objective

● Effect of mini-batch based model synchronization on SGD based SVM
algorithm convergence.

● Evaluate efficiency of the training model based on execution time and
testing accuracy upon batch size.

System Architecture

Anatomy of Datasets

DataSet Training Data (60% / 80%) Cross-Validation Data (60% / 80%) Testing Data (60%, 80%) Sparsity(%) Features

Ijcnn1 21,000 / 28,000 7,000 / 3,500 7,000 / 3,500 40.91 22

Webspam 210,000 / 280,000 70,000 / 35,000 70,000 / 35,000 99.9 254

Epsilon 240,000 / 320,000 80,000 / 40,000 80,000 / 40,000 44.9 2000

Objective Function and Equations

Algorithm Implementation

● We used OpenMPI 3.0.0 (C++)
● AllReduce collective was used to do model synchronization and later

averaging was done over each process.
● Learning rate is an adaptive diminishing function.

○ Function of number of epochs

Model Synchronization

Cross Validation Accuracy Variation [Sequential
Mode] - Ijcnn1 Dataset

Training Time Variation
[Sequential Mode] - Ijcnn1 Dataset

Block Size

Cross-Validation Accuracy Variation Against
Parallelism - Webspam Dataset

Convergence with Parallelism

Convergence Point

Understanding Performance

● Understanding the performance of the algorithm in terms of parallelism
level and block size, in terms of times.

○ Time to update one point (0.5625 us/epoch - epsilon x32 b=1)
○ Time to check for convergence (0.375 us/epoch - epsilon x32 b=1) (objective function

evaluation)
○ Time for MPI collective (3.5625 us/epoch - epsilon x32 b=1) (model synchronization,

i.e allreduce)

Training Time Breakdown

Testing Accuracy Variation
IJCNN1 WEBSPAM EPSILON

Summary of Experimental Results

DataSet Sequential Timing (seconds) Parallel Timing (seconds) Speed Up (x1 vs x32)

Ijcnn1 22.19 1.37 16.2

Webspam 2946.49 120.02 24.55

Epsilon 20037.5 968.782 21.12

Experiment Environment

● For this we used Juliet Cluster which is a part of the Future Systems
cloud environment of Digital Science Center in Indiana University
Bloomington

● Configuration of a Node in the Cluster
○ Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
○ Cores Per Socket = 18
○ Sockets = 2
○ Threads Per Core = 2

https://portal.futuresystems.org/

Extension of Research

● Providing support in both HPC and Dataflow-like computation models.
● Twister2 SVM (Batch and Streaming (Published Stream-ML, IEEE Big Data

Dec/2019)) https://twister2.gitbook.io/twister2/examples/ml/svm
● Available With Twister2 0.2.0 release. [Twister2 is a framework developed by

Indiana University Bloomington as a Big Data Hosting Environment: A
composable framework for high-performance data analytics]

● Twister2 TSet: High Performance Iterative Dataflow (paper published on May
10th, 2019) uses this SVM model as an application.

● Currently working on BLAS level and language level optimizations on
distributed SVM on Java and C++ implementations.

https://twister2.gitbook.io/twister2/examples/ml/svm
https://twister2.gitbook.io/twister2/release/twister2_release_0_2_0
https://www.researchgate.net/profile/Geoffrey_Fox/publication/332246120_Twister2TSet_High-Performance_Iterative_Dataflow/links/5ca8bc6f4585157bd3263666/Twister2TSet-High-Performance-Iterative-Dataflow.pdf

Conclusion
● Designing a highly scalable SVM algorithm with respect existing

implementations.
● Understood the convergence of a distributed machine learning algorithm in

depth with micro-benchmarking on accuracy and execution time.

Implementation Type Optimization Model Scalability Implementations

SMO Lagrangian Optimization Low LibSVM (Sequential)

PSVM Matrix Decomposition Moderate PSVM (Google)

SGD-SVM Gradient Descent Variations High Pegasos SVM

PSGD-SVM Parallel SGD Very high pPackSVM

Our HPC
Implementation

Parallel Pegasos SGD (supports
BLAS(Java,C++))

Very high PSGDDSVMC, PSGDSVM

Our Hybrid
Implementation

Parallel SGD (Twister2 [MPI Backend]) Very high Twister-SVM

Summary
● Code

○ OpenMPI C++: https://github.com/vibhatha/PSGDSVMC [Used in Paper]
○ OpenMPI Java: https://github.com/vibhatha/PSGDSVM
○ OpenMPI Python: https://github.com/vibhatha/PSGDSVMPY
○ Twister2: https://twister2.org/docs/examples/ml/svm/svm

● Paper
○ Pre-print: https://arxiv.org/abs/1905.01219

https://github.com/vibhatha/PSGDSVMC
https://github.com/vibhatha/PSGDSVM
https://github.com/vibhatha/PSGDSVMPY
https://twister2.org/docs/examples/ml/svm/svm
https://arxiv.org/abs/1905.01219

AI System

Data Source Layer

Data Processing Layer

Data Analytics

Deployment

HDFS, CSV, NPY

Twister2, Spark, Storm, Flink, Hadoop

SVM, KMeans, GAN, DNN

EDGE [TPU, GPU, CPU]

Scope Covered in Current Research

SVM
Research

Scientific
Image

Restoration
Research

Scientific Image Restoration
Anywhere

Image Restoration with High Efficiency
● Deep Learning Models are used in most of the scientific experimental

facilities. The intensity of the usage has highly increased in the recent years.
● Low Latency inference is one of the highly demanding requests by scientists.
● Once the deep learning models are trained they must be portable such that it

can be used anywhere with less installation and configuration overheads.

Objectives
● Faster Inference
● Low Cost Medium for Inference
● Availability for Scientific Applications

Technology Usage and Data Source
● Tensorflow 1.14
● TensorflowLite (Edge Compatible Models)
● TPU Accelerator
● TPU Dev Board
● GPU Accelerator: NVIDIA Jetson
● Low-Dose X-ray images from APS

(Argonne Photon Source)
TPU Accelerator

Jetson Tx2

TPU Dev Board

Edge TPU Specs

(5V USB Type-C)

Edge TPU Dev Board Edge TPU Accelerator

Ref.: Z. Liu et al. TomoGAN. arXiv:1902.07582

Operations Layers

1x1 conv2D + Relu 3

3x3 Conv2D + Relu 13

Bilinear upsampling 3

Max Pooling 3

Concatenation (Channel Axis) 3

TomoGAN Generator Architecture

For inference, TomoGAN needs 301 Billion
floating-point operation to denoise an image with
1024x1024 pixels.

Post Quantization of Training Model [USED IN EXPERIMENTS]

● Fast
● Model is modified after training (for quantization purpose)
● Works well with smaller and large models
● Trained for 40K epochs (24 hours training time)

Quantization-Aware Training Model

● Very slow
● Model configured with fake quantization layers
● Good for small models (observation with current experiments on GPU

training)
● 24 hours to train for 1K epochs (low image quality @Testing)

Workflow 1: Inference with CPU

● Use Non-quantized model and do inference on CPU
● Records timing and quality stats
● Uses 1024 x 1024 input image and outputs 1024 x 1024 image

Workflow 2: Inference with GPU

● Non-quantized model converted to GPU compatible quantization model
● Records timing and quality stats
● Uses 1024 x 1024 input image and outputs 1024 x 1024 image
● TensorRT support to run on Edge GPU [Tx2]

Workflow 3: Inference with TPU

● 1024 x 1024 image => 64 x 64 x 256 (256 slices of 64 x 64 images)
● Model Quantization to TPU Compatibility requires a sample dataset.
● The sample dataset governs the quantization range
● Wrote custom wrapper (Specially for image to image translation) for

BasicEngine (Tensoflow API modification)(currently not supported as an API
in Tensorflow)

● Use Interpreter API (Extended API was designed for Image Restoration)

Fine Tune Layer

● Improves the Image Quality
● Shallow CNN Used
● Quantized for Edge-TPU Compatibility

Performance Evaluation on Inference
● TPU Accelerator is

much faster than
CPU

● TPU Accelerator
performs faster
than GPU
Accelerator.

● Time taken to
restore 1024x1014
image

● Tested for 1024
image set an
average timing is
recorded

Accelerator was mounted on host machine[i7@2.6GHz]
Accelerator runs on High frequency mode >> Dev board on low frequency mode

Performance Time Breakdown

Image Quality Evaluation with SSIM
● Structural Similarity

Index is used.
● Fine Tune Layer

improves the
Quantized model
up to the image
quality of a
non-quantized
model.

● Original model
doesn’t use edge
an device. It is a
non-quantized
model.

Conclusion
● We design a faster inference workflow to restore scientific images (Edge TPU

and Edge GPU).
● Enabled the inference workflow to generate high quality images even after

quantization.
● Low cost solution with higher efficiency.
● High accessibility to scientific application developers.
● Designed a portable system which can run anywhere.
● First research approach on image translation on Edge TPUs

AI System

Data Source Layer

Data Processing Layer

Data Analytics Layer

Deployment Layer

HDFS, CSV, NPY

Twister2, Spark, Storm, Flink, Harp

SVM, KMeans, GAN, DNN

EDGE [TPU, GPU, CPU]

Overall Summary

SVM
Research

Scientific
Image

Restoration
Research

Thank You

