Investigating the Performance of Audio/Video Service Architecture II:
Broker Network

Ahmet Uyar
Elec. Eng. and Comp. Sci.
Syracuse University
auyar@syr.edu

ABSTRACT

Increasing network bandwidth and computing power
provide new opportunities for videoconferencing systems
over Internet. In addition to homes and small offices, even
the cell phones will have broadband Internet access in the
near future. Therefore, we can imagine that the trend in
the increasing usage of videoconferencing systems will
continue. This requires universally accessible and
scalable videoconferencing systems that can deliver
thousands of concurrent audio and video streams.
However, developing videoconferencing systems over
Internet is a challenging task, since audio and video
distribution requires high bandwidth and low latency.
Current videoconferencing systems such as IP-Multicast
[1] and H.323 [2] can not fully address the problem of
scalability and universal accessibility. We propose
service oriented architecture for videoconferencing,
GlobalMMCS, and use an event brokering middleware,
NaradaBrokering, to deliver real-time audio and video
streams to high number of users. The performance of the
event brokering network is critical to the success of this
videoconferencing system. In this paper, we evaluate the
performance of NaradaBrokering broker network in
distributed settings in the context of audio/video delivery.
The results demonstrate that even small number of
brokers can deliver audio/video streams to more than a
thousand users with very good quality. They also provide
guidelines for the deployment of GlobalMMCS in
particular, and they provide useful insights for the
feasibility of using sofiware based audio/video delivery
systems in general.

Keywords: Architectures and Design of Collaborative
Systems, Grid-based Collaborative  Environments,
videoconferencing, distributed event brokers.

1. INTRODUCTION

The availability of increasing network bandwidth and
computing power provides new opportunities for distant
communications and collaborations over Internet. On one
hand, the number of homes and small offices with
broadband Internet connections are increasing rapidly.
Even cell phones will have broadband Internet access in
the near future with the deployment of 3G standards. On
the other hand, the usage of webcams, video camera

Geoffrey Fox
Community Grids Labs
Indiana University
gef@indiana.edu

enabled PDAs, and cell phones are growing by many
millions every year. Therefore, it is not inconceivable to
imagine that the trend in the increasing usage of
videoconferencing systems will continue by accelerating.
This will require universally accessible and scalable
videoconferencing systems that can deliver thousands or
tens of thousands of concurrent audio and video streams.
In addition to audio and video delivery, such systems
should also provide scalable media processing services
such as transcoding, audio mixing, video merging, etc. to
support increasingly diverse set of clients.

However, developing videoconferencing systems over
Internet is a challenging task, since audio and video
distribution requires high bandwidth and low latency. In
addition, the processing of audio and video streams is
computing intensive. Therefore, it is particularly difficult
to develop scalable systems that support high number of
concurrent users with diverse set of features.
Videoconferencing systems such as IP-Multicast [1] and
H.323 [2] can not fully address these problems. These
systems focus on delivering the best performance and lack
flexible service oriented architecture. IP-Multicast is not
universally accessible, and H.323 based systems are not
flexible to add new resources and services. We believe
that with the advancements in computing power and
network bandwidth, more flexible and service oriented
systems should be developed to manage audio and video
conferencing systems. Therefore, we proposed service-
oriented  architecture to  develop a  scalable
videoconferencing system, GlobalMMCS [3, 4, 5], based
on a publish/subscribe event brokering network,
NaradaBrokering [6, 7].

There are two main design principles of GlobalMMCS
architecture. First one is to design independently scalable
and distributed components for each task performed in
videoconferencing systems. Second one is managing the
interactions among these components using the principles
of service-oriented computing to provide a flexible and
dynamic framework to add new computing power and
services. We identified that there are three main tasks
performed in videoconferencing systems on server side:
audio/video distribution, media processing and meeting
management. Contrary to conventional videoconferencing
systems, we use a distributed event brokering system to
deliver all media and data content. This has many
advantages, as we pointed out in [8]. Some of these



advantages are scalability, support for multiple transport
protocols, traversing through firewalls, performance
monitoring, and security services provided by
NaradaBrokering. Media processing is handled by media
servers that are attached to this distribution network. They
can scale to arbitrary sizes and they can be distributed in
geographically distant locations when necessary.
However, the performance of the event brokering network
is critical to the success of this videoconferencing system.
Our analysis of the performance of a single
NaradaBrokering broker in the context of audio/video
delivery [8] showed that a single broker can support a few
hundred participants in both large and small scale
meetings with very good quality service. In this paper, we
investigate the performance and the scalability of the
broker network in distributed settings. This analysis will
provide guidelines for the deployment of this
videoconferencing system in particular, and they provide
useful insights for the feasibility of using software based
audio/video delivery systems in general.

First, we explain the scope of the performance tests. In
section 3, we evaluate the routing algorithm in
NaradaBrokering and propose improvements to provide
better scalability. In section 4, we present the single large
scale meeting test results in distributed settings. In section
5, we investigate the performance of the broker network
for multiple smaller scale meetings. In section 6, we
present the test results in wide area networks. In the final
section, we conclude by summarizing the results.

2. EVALUATING THE PERFORMANCE
OF THE BROKER NETWORK

We investigate the quality of the service provided and the
total number of users supported. Distributed broker
network provides both opportunities and challenges for
providing better quality service and supporting higher
number of users. We investigate the performance and the
scalability of the broker network for large and small size
meetings. We conduct performance tests in controlled
settings to eliminate outside factors and measure the
parameters that affect the performance of the brokers
precisely. These tests demonstrate the capacity of the
broker network and provide guidelines to utilize the
resources of the broker network efficiently.

We performed all tests using Java. NaradaBrokering
software is written in Java. The parts of GlobalMMCS
that we use in these tests are also written in Java using
Java Media Framework [10]. We recorded a video stream
for 2 minutes to use in these tests. The video stream was
an H.263 stream with 15 frames per second. It had the
average bandwidth of 280 kbps. It was the video stream
of a speaking participant in a videoconferencing setting.
We give more details about this stream in [9].

We outlined the quality assessment criteria for
evaluation of the results of the performance tests in [9].
We require the broker network not to introduce more than
100ms of latency when routing packages. We label
packages that take more than 100ms as late arriving
packages and consider them as lost packages when
assessing the quality of the stream delivery. In addition,
we require the loss rates to be less than 1.0%.

3. DELIVERY PRIORITY FOR INTER-
BROKER TRAFFIC

A NaradaBrokering broker routes received packages in
the following manner. First, every received package is
placed into a first-come-first-serve queue. The routing
thread picks up the first arrived package from this queue,
calculates the destinations, and transmits it to all
subscribers of that topic in the order of their subscription.
The routing thread continues to route packages one by
one as long as there are packages in this queue. In
distributed settings, if a package needs to be delivered to
other brokers as well, the routing thread first sends the
package to other brokers and then to local subscribers.
This is to avoid introducing more delays to the transit
time of packages that need to travel multiple brokers.

When we started testing the performance of the
distributed brokers for a single meeting, we observed that
an overloaded broker along the path from the source
client to the destination can introduce significant delays to
the transmission time of packages. Although other brokers
might not be overloaded, their subscribers can still be
affected severely by the load of an overloaded broker
along the path. In addition, the travel times for packages
increases significantly when they go through multiple
brokers. Each broker along the path introduces
unnecessary delays. This limits the number of brokers a
package can travel. Therefore, it limits the scalability of
the broker network considerably. We demonstrate this in
the following test case.

Machine 1

Measuring "’ Video
Receivers Transmitter

x Machine 2
- Broker 1

Video ,’
Receivers

Machine 4

Machine 3

:

Figure 1 Single video meeting test with two brokers

We set up an NB cluster with two brokers (Figure 1). We
initiated one video meeting and loaded the first broker



with 400 participants and the second broker with only 6
participants. One video stream is published to the meeting
through the first broker. We gathered the results from the
first and the last receivers of both brokers. Therefore, they
provide the best and the worst results among the meeting
participants in both brokers. We performed these tests in a
Linux cluster with 8 nodes. Each node had 2.4GHz Dual
Intel Xeon CPU and 2 GB of memory.

Table 1 shows the average latencies of 5610 video
packages transmitted during the tests. The latency values
of both receivers of the second broker are very close to
the latency values of the first receiver of the first broker.
This test shows that the first broker introduces significant
delays to the transit times of video packages transmitted
to the second broker. Although the second broker has very
few subscribers, its subscribers are still bounded by the
first broker. The subscribers of the second broker can not
get a service better than the first receiver of the first
broker. The main reason for this is the first-come-first-
serve queue in the first broker. When there are multiple
packages in this queue, the later ones need to wait the
earlier ones to be routed to all 400 local subscribers. This
can be eliminated by a mechanism that will route
packages first to other brokers in the system without
waiting local subscribers to be served. This can be
implemented by introducing another first-come-first-serve
queue and another thread to the broker.

Table 1 Latency values for single video meeting test

for two brokers
Firstuser | Lastuser | Avg.
Latency Latency latency
(ms) (ms) (ms)
Brokerl 15.83 24.55 20.20
Broker2 16.07 16.18 16.13

3.1. Double Queuing Algorithm

First Inter
—» Broker To

Thread 1
Queue router Brokers

Y T
Second client 0
local
Queue router )
clients

Figure 2: Double queuing algorithm.

Thread 2

We should also remember that there are very few
brokers to route a package in a typical distributed NB
network. A broker is connected to less than 5 other
brokers in most cases. Therefore, inter-broker routing will
take very small amount of time compared to the delivery
of packages to high number of local clients. Another
aspect of this algorithm is that there are two separate
queues for both of these queue layers. As it is explained in
[9], audio package routing has priority over other
packages in brokers. Therefore, there is one audio queue
and another for all other packages. The threads first route
the audio packages if there is any, then they route the
other packages.

We repeated the single video meeting test for two
brokers with the same setting for the double queuing
algorithm. Table 2 shows the results. As it can be seen,
the latency values of the receivers of the second broker
are very small. The only overhead introduced by the first
broker is the overhead of routing packages to another
broker. The high number of clients in the first broker does
not impact the performance of the receivers of the second
broker. This new algorithm eliminates cases where an
overloaded broker severely affects the performance of the
subscribers of other brokers.

Table 2 Latency values for single video meeting test
with double queuing algorithm for two brokers

Double queuing algorithm separates inter-broker delivery
of packages from local client deliveries. It aims to
introduce minimum delays to packages that will be routed
to other brokers in the system. In addition to an additional
queue, it also introduces another routing thread. Figure 2
depicts this algorithm. Received packages are first placed
into the first queue. The first thread picks up a package
from this first-come-first-serve queue and delivers it to
other brokers in the system if necessary. It hands it over to
the second thread by placing it into the second queue after
finishing the inter-broker routing. Then it continues to
route the next package in the first queue without waiting
the second thread to serve the local clients. The second
thread continues to serve the local clients as long as there
are packages in the second queue. Since these two threads
have similar priorities they work concurrently.

First user | Lastuser | Avg.

Latency Latency Latency

(ms) (ms) (ms)
Brokerl 16.07 24.92 20.52
Broker2 1.41 1.62 1.52

Another very important advantage of the double
queuing algorithm is that it enables the brokering network
to grow to high number of brokers. As we can see from
the latency values at Table 2, traveling of packages
through a relatively loaded broker takes only around 1ms,
compared to 15ms previously. Now, even going through
10 brokers for a package only introduces around 10ms of
overhead when the transmission delays between the
brokers are ignored. This makes it possible for packages
to travel many brokers along the way from sources to
destinations. Therefore, it enables the broker network to
grow in size.



Table 3 Single video meeting test with double queuing
for two brokers each having 200 users

First user | Lastuser | Avg.

Latency Latency Latency

(ms) (ms) (ms)
Brokerl 7.94 12.37 10.16
Broker2 8.24 12.67 10.45

In addition, the double queuing algorithm enables the
distribution of the load of a large size meeting among
multiple brokers to provide better quality services with
smaller latency and jitter values. Since brokers add
minimum delays to packages traveling to other brokers, it
makes adding extra brokers into the system very efficient.
To demonstrate this, we conducted another test in which
each broker had 200 participants. Table 3 shows the
results. The latency values of the first broker and the
second broker are very similar. The values of the second
broker are slightly higher because the packages travel
through the first broker to reach to the second broker.
When we compare the results of Table 3 and Table 2, we
see that the distribution of 400 participants into two
brokers reduces the average latencies by fifty percent.
This illustrates that more brokers can be introduced into a
system to provide better quality service. Similarly, more
brokers can be added to provide services to higher
number of participants. We show this in the next section.

4. SINGLE MEETING TESTS

Since traveling of packages through multiple brokers adds
very small amount of overhead, the number of supported
users in a meeting can be increased almost linearly by
adding new brokers. In this section, we evaluate the
performance of the broker network with four brokers for a
single video meeting. Four brokers are connected as in
(Figure 3). For the tests in this section, we used two Linux
clusters, each having 8 nodes. The nodes of the first
cluster had 2.4GHz Dual Intel Xeon CPU and 2 GB of
memory. The nodes of the second cluster had 2.8 GHz
Dual Intel Xeon CPU and 2GB of memory. Both clusters
had gigabit network bandwidth among its nodes.

The receivers were evenly distributed among the
brokers and equal number of receivers joined the meeting
through each broker. We gathered the results from the last
users of every broker. Table 4 shows the average latency
values from each broker for the 5610 video packages
exchanged. The latency values of brokerl and broker2 are
very similar to each other. Similarly, the latency values of
broker3 and broker4 are very similar. Last two brokers
perform better than the first two brokers; because the
second Linux cluster have superior computing power.

Linux Cluster 2 Linux Cluster 1

Machine 1

Measuring "‘ Video
Receivers Jransmitter,

Broker 3 »| Broker2 Broker 1

Video »l Video ’.l Video ”l Video ’
Receivers Receivers Receivers Receivers

~D—
0

J

Figure 3 Single video meeting tests with four brokers

As the latency values show, adding new brokers
increases the capacity of the broker network as much as
the capacity of the added machines. In this case, since all
brokers have very similar computing power, each broker
increases the capacity of the broker network almost
linearly.

Table 5 shows the percentages of late arriving
packages. For the first two brokers, the percentage of late
arriving packages is %1.9 when there are 400 participants.
They can support up to 400 users. For the last two
brokers, the rate of late arriving packages are less than
%1.0 for the same number of participants. They support
400 users comfortably. In total, four brokers support close
to 1600 participants in a single video meeting.

Table 4 Latencies of last users in single video meetings

Users
per users Bl B2 B3 B4
broker | intotal | (ms) (ms) (ms) (ms)

200 800 | 12.57 | 12.93 | 12.39 | 12.79

300 1200 | 18.78 | 19.25 | 17.55 | 18.03

400 1600 | 25.47 | 26.02 | 22.84 | 23.55

500 2000 | 32.61 | 33.72 | 28.53 | 29.38

900 3600 | 685.7 | 818.9 | 104.5| 90.17

Table 5 Percentages of the late arriving packages for
last users in single video meetings
Users | Users

per in Bl B2 B3 B4

broker | total (%) %) | %) | (%)
200 800 0 0 0 0
300 1200 0.29 | 0.27 0] 0.02

400 1600 1.87 | 192 ] 073 | 0.73
500 | 2000 4.01 | 443 | 241 24
900 | 3600 93.5| 938 | 37.8] 313

In summary, these tests demonstrate that the broker
network scales well in distributed settings when



delivering audio and video streams to high number of
participants in large scale meetings. The scalability of the
broker network increases almost linearly by the number of
brokers. The overhead of going through multiple brokers
for a stream is not significant, since inter-broker routing
has priority over local client routings.

S. MULTIPLE MEETING TESTS

The behavior of the broker network is more complex
when there are multiple concurrent meetings compared to
having a single meeting. Having multiple meetings
provide both opportunities and challenges. As we have
seen in the single broker tests with multiple video
meetings [9], conducting multiple concurrent meetings on
a broker can increase both the quality of the service and
the number of supported users. This can also be achieved
in multi broker setting as long as the size of these
meetings and the distribution of clients among brokers are
managed properly. If the sizes of meetings are very small
and the clients in meetings are scattered around the
brokers, then the broker network can be utilized poorly.
Inter-broker stream delivery can reduce the number of
supported users significantly. The best broker utilization
is achieved when there are multiple streams coming to a
broker and each incoming stream is delivered to many
receivers. If all brokers are utilized fully in this fashion,
multi broker network provides better services to higher
number of participants. To investigate this, we conducted
multiple video meeting tests with two different meeting
sizes.

We used the same broker organization scheme as the
single meeting tests in the previous section. There were
four brokers connected as a chain. In this case, all brokers
were running in the same Linux cluster that has 8
identical nodes with 2.8 GHz Dual Intel Xeon CPU and
2GB of memory. We also used five other Linux machines
that are connected to this cluster with a gigabit bandwidth
to run the passive receiver clients that are not measuring
the performance.

First, we tested with multiple meetings each having
20 receivers. One client was publishing the video stream
on a broker and 20 clients were receiving it. We
distributed the clients of each meeting among brokers
evenly. 5 clients joined each meeting through each broker.
We also distributed the video transmitters of all meetings
evenly among the brokers. There were equal numbers of
transmitters publishing video streams to each broker. We
collected the performance data from three meetings. The
publishers of these three meetings were publishing their
streams through the first broker. For each of these three
meetings, we collected the results from 4 receivers, each
one getting the stream from a different broker. Table 6
shows the average latency values of three meetings.
Similarly Table 7, Table 8, and Table 9 show the results

for jitters, percentages of lost packages and the
percentages of late arriving packages, respectively.

Table 6 Average latencies for multiple video meetings
each having 20 participants

Total Total | Latencies from 4 brokers (ms)

meetings | users | Bl B2 B3 B4
24 480 | 330 | 424 | 532 | 587
48 960 | 298| 5.04| 690 | 8.20
72 | 1440 | 4.83 13.6 17.0 17.5
96 | 1920 | 5.76 | 25.5 5271 473

Table 7 Average jitters for multiple video meetings
each having 20 participants
Total Total | Jitters from 4 brokers (ms)
meetings | users | Bl B2 B3 B4
24| 480 | 139 144 | 1.65| 1.72
48 960 | 1.84 | 2.53 | 2.82| 3.00
72| 1440 | 1.70 | 3.04 | 3.52| 3.51
96 | 1920 | 1.69 | 3.70 | 528 | 5.52

Table 8 Average loss rates for multiple video meetings
each having 20 participants

Total Total | Loss rates from 4 brokers (%)
meetings | users | Bl B2 B3 B4

24| 480 | 0.01 | 0.00 | 0.00 | 0.00
48 960 | 0.00 | 0.06 | 0.11 | 0.22
72| 1440 | 0.02 | 1.20| 1.60 | 1.63
96 | 1920 | 0.13 | 641 | 196 | 19.6

Table 9 Average late arrivals for multiple video
meetings each having 20 participants
Total Total | Late arrivals from 4 brokers (%)

meetings | Users | Bl B2 B3 B4
24 480 0.00| 0.00| 0.03] 0.03
48 960 0.00| 0.11 | 0.09] 0.17
72 | 1440 0.00 | 0.01| 0.03| 0.04
96 | 1920 0.00] 0.13] 279] 091

Since the publishers are publishing the streams
through the first broker, the latency values for the first
broker are the smallest. Latency values increase when the
streams travel more hops along the way from the first
broker to the last. The broker network provides excellent
quality communication when there are less than 72
meetings. The latency values and jitters for all brokers are
very small. There are minor package losses and late
arriving packages. For 72 meetings, the latency values
and jitters are still very small. There is also very few late
arriving packages. However, there are a little more than
%1.0 lost packages. When there are 96 meetings,
significant amount of packages are lost. Therefore, the



broker network can support up to 72 meetings or up to
1440 participants in total. This number is slightly smaller
than the single video meeting case, in which the broker
network was able to support up to 1600 participants.

When we compare the scalability of the broker
network with the scalability of the single broker in
multiple meeting tests at [9], the number of supported
participants increased two times. The single broker
supported 700 participants in 35 video meetings, each
having 20 users. In this test, four brokers supported
around 1440 participants in 72 meetings, each having 20
users. As we can see, the increase on the number of
brokers did not result in a linear increase on the number
of supported participants. There are two reasons for this.
First one is the overhead of inter-broker stream delivery
in distributed setting. Now, the brokers deliver streams
not only to clients but also to other brokers. The second
one is the smaller number of participants in each broker
for each meeting. Each incoming package is delivered to
only 5 users in the distributed setting, while it was
delivered to 20 users in the single broker case. This test
shows that the distribution of users in small size meetings
among multiple brokers reduces the scalability of the
broker network. When meeting sizes are small, it would
be better to avoid distribution of users among brokers if
possible. On the other hand, the distribution of users in
large scale meetings among multiple brokers increases the
scalability and the quality of the service as we pointed out
in double queuing algorithm section.

Since the small number of participants joining
meetings through each broker reduced the scalability and
the quality of the service provided, we tested with a larger
meeting size to observe the difference. This time, 10
participants joined each meeting through each broker.
Therefore, the sizes of meetings were 40. All other
aspects of the test were the same as the previous test.
Below tables (Table 10, Table 11, Table 12, and Table
13) show the measured parameters.

In this case, the number of supported clients
increased significantly. Now, 48 meetings with 1920
participants in total are supported with excellent quality,
compared to 1440 participants in the previous test with
meeting sizes of 20. In addition, the quality of the service
provided by the broker network also increased
considerably. The average latency and jitter values are
much lower. The late arriving packages and losses are
very small, too. The main reason for the better
performance is the better utilization of the broker
network. Now, there is less stream exchange among
brokers and each incoming stream is delivered to more
participants by every broker.

The scalability and the quality of service provided in
this case are also much better than the single video
meeting case on multiple brokers. Compared to the 1600
total users, now 1920 participants are supported. In

addition, the latency and jitter values are much smaller.
For 1600 participants, the latency values are less than
10ms, it was around 23ms for the single video meeting
case for the last receiver. There is also a big difference in
jitter values. While it is around 2ms for this case, it was
more than 10ms for the single video meeting case.
Therefore, this test demonstrates that similar to the single
broker tests, it is possible to better utilize the distributed
broker network by having multiple video meetings than
by having a single video meeting as long as the
distribution of clients among brokers and the meeting
sizes are chosen properly.

Table 10 Average latencies for multiple video meeting
tests each having 40 participants

Total Total | Latencies from 4 brokers (ms)

meetings | users | Bl B2 B3 B4
40 | 1600 | 334 | 693 | 843 | 8.37
48 | 1920 | 393 | 846 | 146 | 10.6
60 | 2400 | 9.04 | 170.| 89.9 | 2538

Table 11 Average jitters for multiple video meeting
tests each having 40 participants

Total Total | Jitters from 4 brokers (ms)
meetings Users | Bl B2 B3 B4
40 | 1600 | 1.15 ] 2.20 1.99 | 2.10
48 | 1920 | 147 | 2.12 | 257 | 227
60 | 2400 | 242 | 462 | 481 4.60

Table 12 Average loss rates for multiple video meeting
tests each having 40 participants.

Total Total | Loss rates from 4 brokers (%)
meetings | Users | Bl B2 B3 B4
40 1600 | 0.00 0.00 0.00 0.00
48 1920 | 0.12 0.29 0.50 0.50
60 | 2400 | 0.16 1.30 | 2.51 2.82

Table 13 Average late arrivals for multiple video
meeting tests each having 40 participants

Total Total | Late arrivals from 4 brokers (%)

meetings | users | Bl B2 B3 B4
40 | 1600 | 0.0 0.00 | 0.00 |0.00
48 | 1920 | 0.03 0.14 ]0.57 0.11
60 | 2400 | 0.00 53.0 364 | 0.69

We should also note the big difference among
latency values from four brokers when there are 60
meetings. While the latency values from the first and the
last brokers are relatively small, the latency values from
the second and the third brokers are much higher. The
main reason for this difference is the load on brokers.
Since the broker network is organized as a chain, the
middle two brokers in the chain delivers more streams
among brokers. While the brokers on the edge delivers



only the streams that are directly published on them by
the clients to the next broker, the middle brokers both act
as a bridge between the brokers on both sides and transmit
the streams that are directly published on them to two
other brokers on both sides. Therefore, this broker
organization scheme puts more loads on the middle
brokers. Other broker organization schemes can be
explored such as ring or full mesh to avoid such
disproportionate load.

6. WIDE AREA TESTS

In this section, we investigate the delivery of audio/video
streams to geographically distant locations. We measure
the quality of services provided in real life
videoconferencing settings where clients can be scattered
around the world. We had access to machines at three
more locations, in addition to the two Linux clusters that
we used for the previous distributed broker tests. Those
two Linux clusters were in the same town (Bloomington,
IN). The first one was in Community Grids Labs at IU
(CGL) and the second one was in the department of
Computer Science (CS) at IU. Both of these sites were
connected to Internet2 with a gigabit bandwidth. The
other three sites were in geographically distant locations:
Syracuse University in Syracuse, NY, Florida State
University (FSU) in Tallahassee, FL and Cardiff
University in Cardiff, UK. All these three sites had 90 to
100Mbps download bandwidths.

¥
¢
']
Cardiff, UK
L B

Tallphassee, FL

Figure 4 Wide are video delivery tests.

We tested the quality of service provided to remote
participants in a video meeting with one broker. The
broker was running at the CS site in Indiana and equal
numbers of participants were running at the four other
sites (Figure 4). A client running in the same site with the
broker published the video stream on the broker. We
measured the latencies, jitters and loss rates for the last
clients at each site. We measured the clock differences
between the transmitter and the receiver machines to

calculate the latencies. There can be a few millisecond
discrepancies on latency values because of the difficulties
on determining the exact clock differences. Table 14
shows the latency values for the last users in four sites;
Indiana (IN), Syracuse (NY), Florida State (FL) and
Cardiff (UK). The last column shows the total amount of
data transmitted to each site. Table 15 shows the jitters
and Table 16 shows the loss rates for the same tests.

Table 14 Latency values for single video meetings with
one broker in distributed setting

users Latencies of last participants BW
per all ps
site users | IN NY FL UK Mbps

4 16 1.8 | 13.28 | 13.63 | 56.36 1.2

50 | 200 | 10.84 | 23.94 | 24.42 | 65.55 15

100 | 400 | 21.36 | 36.25 | 36.78 | 76.15 30

150 | 600 | 33.04 | 49.8| 47.6 | 86.98 45

Table 15 Jitter values for single video meetings with

one broker in distributed setting
users all Jitters of last users

per site | users | IN NY | FL | UK

4 16 0.6 | 0.77 | 2.42 | 1.55

50 | 200 4.87 | 445|439 | 452

100 | 400 9.95 | 8.98 | 892 | 9.43

150 | 600 148 | 13.4 | 12.9 | 14.8

Table 16 Loss rates for single video meetings with one
broker in distributed setting

users all Loss rates of last users
persite |users | IN | NY FL UK
4 16 0 0.02 0.05 0
50 200 0 0 0.11 0
100 400 0 0.05 0.02 0
150 600 0 0.02 0.05 0

There are two major factors that contribute to the
latency values shown on Table 14. These are the routing
delays introduced by the broker and the transmission
delays from the broker to the destination site. The latency
values seen at Indiana is mainly due to the routing delays
by the broker, since these two sites are very close to each
other and connected with gigabit network. Therefore, we
can estimate the transmission overheads for remaining
three sites by subtracting the routing overhead (the
latency for Indiana site) from their total latency.
Similarly, these two factors are the main causes of the
jitter, and we can estimate the jitter caused by the
transmission by assuming that the jitter of Indiana site is
mainly due to the routing at the broker.

The latency values at the first row show the
minimum transmission times for packages to travel
between the sites, since the number of participants is very



low and the routing overhead is very small. The US sites
have very low latency values, all are less than 14ms. That
is excellent for video conferencing. Even latency values
for UK clients are less than 60ms, which is excellent too.

When the number of clients at each site increases,
both the routing overhead and the transmission latency
increase. The routing overhead increases to 33ms for the
last user with 150 participants at Indiana. However, the
increase on the transmission overheads is much smaller
for all three distant sites. It increases only around Sms
from 4 participants to 150. Similarly, the increase on the
jitter is mainly due to the routing and the increase by the
transmission is very small. Therefore, this test shows that
150 video streams can be transferred between these four
sites with very small increase on the transmission delays
and jitters. In addition, Table 16 shows that there are
almost no package losses, even for the clients at UK when
there are 150 users. These results indicate that very high
number of video streams can be transferred between these
four sites with excellent quality.

These tests demonstrate that by running a broker in a
remote site, significant bandwidth savings can be
achieved and the bandwidth limitations can be overcome
to support more participants. If there was a broker running
at each remote location in our video meeting test, only
one copy of the video stream would have been transferred
between the sites. This would reduce the used bandwidth
and the load on the broker at Indiana significantly.

Another important observation about the results of
Cardiff clients is the benefit of running brokers at
geographically distant locations. Since the transmission
times are significantly higher for geographically distant
locations, it is very important to run brokers at those sites
to minimize the transmission delays. For example, if the
publisher was in UK for the single broker test, then the
transmission overhead of the streams for clients at UK
would have been increased by two fold. The video stream
would have traveled through the Atlantic ocean two times
to reach to the clients at UK. Therefore, it is critical to run
brokers at geographically distant sites.

Maybe the most important result of the wide area tests
is the fact that the networks that we tested provided very
good quality communication for audio/video streams.
When transferring even very high number of video
streams, they provided excellent service for real-time
videoconferencing applications. The lost rates were very
small even for 150 video streams. Similarly, the amount
of latency and jitter was very small. Even going through
the Atlantic Ocean does not introduce a challenge.
Therefore, the underlying network infrastructure is good
enough to implement a distributed brokering system on
top of it to deliver audio/video streams.

7. CONCLUSION

Our analysis of the performance of the broker network in
distributed setting shows that there are many benefits of
having multiple brokers. The first one is the support for
higher number of users. In the case of large scale
meetings, the number of supported users increases almost
linearly by adding new brokers into the system. In our test
setting, four brokers supported up to 1600 participants in
a video meeting and this number can be increased easily
by adding new brokers. In the case of multiple meetings,
similar increase can be achieved as long as the
distribution of users among brokers is managed properly.
The second benefit of having multiple brokers is to
provide better quality service with smaller latencies,
jitters and loss rates to clients. Particularly the quality of
stream delivery for large size meetings can be improved
significantly by distributing clients among multiple
brokers. In addition, running brokers in geographically
distant locations can reduce the transit delays of packages
considerably. The third benefit is the bandwidth savings.
When there are multiple users on an organization, running
a broker can reduce the used bandwidth significantly. In
summary, the performance tests in this paper showed that
GlobalMMCS videoconferencing system can be deployed
in wide area networks to provide services to high number
of users.

8. REFERENCES

[1] K. Almeroth, “The Evolution of Multicast: From the MBone
to Inter-Domain Multicast to Internet2 Deployment”, IEEE
Network, Jan 2000, Volume 14.

[2] ITU-T Recommendation H.323, “Packet based multimedia
communication systems”, Geneva, Switzerland, Feb. 1998.

[3] http://www.globalmmcs.org

[4] G. Fox, W. Wu, A. Uyar, H. Bulut, S. Pallickara. “Global
Multimedia Collaboration System”. Concurrency And
Computation: Paractice and Experience. 2004; 16:441-447

[5] Ahmet Uyar, Wenjun Wu, Geoffrey Fox. “Service-Oriented
Architecture for Building a Scalable Videoconferencing
System”. Technical Report June 2004.
http://grids.ucs.indiana.edu/ptliupages/publications/

[6] http://www.naradabrokering.org.

[7] S. Pallickara and G. Fox. NaradaBrokering: A Middleware
Framework and Architecture for Enabling Durable Peer-to-
Peer Grids. Proceedings of ACM/IFIP/USENIX
International Middleware Conference. 2003. pp 41-61.

[8] A. Uyar, S. Pallickara, G. Fox, “Towards an Architecture for
Audio/Video Conferencing in Distributed Brokering
Systems”, The 2003 Int. Conference on Communications in
Computing, June 23 - 26, Las Vegas, Nevada, USA.

[91 Ahmet Uyar, Geoffrey Fox. Investigating the Performance
of Audio/Video Service Architecture II: Single Broker. 2005
International Symposium on Collaborative Technologies
and Systems. May 2005, Missouri, USA.

[10] Sun Microsystems, Java Media Framework 2.1. 2001



