
Data Integration Hub for a Hybrid Paper Search

Jungkee Kim1,2, Geoffrey Fox2, and Seong-Joon Yoo3

1 Department of Computer Science, Florida State University, Tallahassee FL 32306,
U.S.A.,

jungkkim@cs.fsu.edu,
2 Community Grids Laboratory, Indiana University, Bloomington IN 47404, U.S.A.
3 School of Computer Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-gu,

Seoul, 143-747, Korea

Abstract. In this paper we describe the design of a hybrid search that
combines simple metadata search with a traditional keyword search over
unstructured context data. This paradigm provides the inquirer addi-
tional options to narrow the search with some semantic aspects through
the XML metadata query. We demonstrate a paper search for a case
study of the hybrid search, and describe a data integration hub to inte-
grate those data dispersed on the Net.

1 Introduction

To discover and share heterogeneous resources on the Net has been a long term
challenge since computer communication networks were popularized. There are
two traditional approaches to organizing the data to be searched—one is struc-
tured data and the other is unstructured data. A Web search engine is a typical
example of search on the Internet. Its technologies are rooted in information
retrieval that represents search over the unstructured data.

Web search engines provide clues for resource location, but they have no
semantic schema and often produce meaningless keyword search results. The Se-
mantic Web is a ambitious extension of the Web. It also includes multiple relation
links with directed labeled graphs by which machines like Web crawlers can in-
terpret the relationship between resources. Meanwhile the ordinary Web has a
single relationship and a machine cannot infer further meaning. To represent the
relations of the object on the Web, the object terms should be defined under
a specific description-an ontology. Domain experts are usually needed to design
an ontology due to the sophisticated definition required. Currently, many Web
pages included no such semantic content, and no unified definition of general
semantic agreement exists.

Our hybrid keyword search aims to give an intermediate search paradigm on
the Internet—providing semantic value through XML metadata that are simpler
than those of the Semantic Web. In this paper we describe our design of hybrid
search systems. In earlier experiments, we had suffered from performance prob-
lems in a local level, and we proposed scalable hybrid search on distributed envi-
ronments [4, 5]. In the architecture, a group of independent search providers share



their information through their own search systems. But some data providers,
who possess small amounts of data, may join such group. They may not want to
develop their own search services. Otherwise, participation of many nodes pos-
sessing small data in a group will increase the communication traffic and drop a
chance to reach the target information under Time-to-Live (TTL) strategy. Par-
tial integration may be one possible method to increase the data portion queried
in the search group. In this paper we also present our architecture for data inte-
gration hub, which is an application communicating through a message broker
with centralized control. This hub can act as a partial integrator on distributed
databases or peer-to-peer systems.

This paper is organized as follows. In the next section we describe one of
our hybrid keyword search architectures. We present a data integration hub to
integrate those papers in Section 3. In Section 4, we summarize and conclude.

2 Hybrid Keyword Search

Our hybrid keyword search combines metadata search with a traditional keyword
search over unstructured context data. Each chunk of unstructured data, usually
represented by a file, has an assigned metadata. We use XML—the de facto
standard format for information exchange between machines—as a metalanguage
for the metadata. To demonstrate the practicality of the hybrid keyword search,
we design and evaluate hybrid search systems based on a native XML database
and a file system based text search library, as well as a market-leading relational
database management system that integrates XML and text management.

We have already introduced a relational database based implementation [3,
4]. It utilized an XML-enabled relational Database Management System (DBMS)
with nested subqueries to implement the combination of query results against
unstructured documents and semistructured metadata. The other implementa-
tion is based on a native XML database and a text search library. We use Apache
Xindice [2] for XML instance repositories and XML query processing. Jakarta
Lucene [1] is used to manage context query over unstructured data in our hybrid
search. The query processing architecture is shown in figure 1.

In the Xindice database, we associate an XML instance with an unstructured
document by assigning the file name for the document as the key of the XML
instance. For example, an XML instance in a file named “pt1.xml” with unstruc-
tured data in the file “apaper.pdf” by inserting the XML instance into the data
collection as follows:
xindice ad -c /a collection path -f pt1.xml -n apaper.pdf

The assigned key—the file name of unstructured document in the example—as
an attribute value on the root element of the XML created by executing an
XPath query. For example the query result may start:
<bibliography src:col="/a collection path " src:key="apaper.pdf "

xmlns:src="http://xml.apache.org/xindice/Query">

The key and result XML tuples are stored in a hash table. Another keyword
search against unstructured documents returns names of documents which in-



Metadata in XML format

Xindice Storage

Unstructured Data

Document Name

Unstructured Data Document

Binary to Text

   Converter

Text Document

Query

Lucene Indexing

Metadata Query

   Processing
Text Query Processing

Hash Table

(Key, XML)

List of matched documents

Final Result Set

(Key, Metadata)

Fig. 1. Query Processing Architecture

clude the given keyword in the text. The returned names are mapped in the hash
table and the combined results are collected in a Java hash table.

For efficient text search, Jakarta Lucene provides an index class along with a
stop word filtering analyzer class. The analyzer filters out stop words—articles
and other words that are meaningless to the search. Some binary format files
should be converted to pure text files before indexing. We pass the binary file
name as well as the text file name as parameters to the index generating class
in order to indicate the original document format.

2.1 Case Study: Hybrid Paper Search

The initial demonstration of the hybrid search is in a simplified model—a paper
search. The paper search is a content search across various types of documents.
Each document has metadata presented as an XML instance. An example XML
instance is shown in figure 2.

In this demonstration we use a relational DBMS instead of a native XML
database. Two relational database tables are used for metadata and documents.
For the XML instances representing the metadata, the XMLType of Oracle 9i
[6] is used. A column with BFILE large object type is used for the external
document table. Those large object rows are indexed using Oracle Text—a text
management system integrated into Oracle DBMS. Through an Oracle Text in-
dex, we can search the target content. The document table has a special attribute
for a document type—BINARY or TEXT. This attribute is necessary for the
filtering option of Oracle Text. Oracle Text filters binary files to pure text in-
stances before making an index. A one-to-one relationship set is used for relation
between the paper document and metadata, but a one-to-many or many-to-many



<bibliography>

<authors>

<author>J. Kim</author>

<author>O. Balsoy</author>

<author>M. Pierce</author>

<author>G. Fox</author>

</authors>

<title>Design of a Hybrid Search in the OKC</title>

<source>Proceedings of the International Conference on IKS</source>

<year>2002</year>

</bibliography>

Fig. 2. An Example XML Instance

relationship set could be used for other applications. The relationship table is
not necessary in one-to-one relationships, but it is essential to decompose re-
lations to avoid anomalies in one-to-many or many-to-many relationship. With
two data tables and a relationship table we can query keywords in the content,
which can be associated with particular metadata through nested subqueries.
For example, we can find documents with a keyword “XML” and published in
2002. Figure 3 shows the relational schema of our hybrid paper search.

papers(paperND: string, descriptions: XMLType)

paperfiles(filename: string, doctype: string, contents: BFILE)

filelocator(paperND: string, filename: string)

Fig. 3. Relational Schema of Hybrid Paper Search

3 Data Integration Hub for Hybrid Search

In our earlier work [5] we assumed query clients only read resource in the other
nodes. In this paper we take into account that clients may desire to be a data
provider without providing an independent search service. Several or many data
providers can share their information through a centralized database. They may
upload, query, and download unstructured data with attached metadata via a
central DBMS.

Another aspect for the integration hub, which was not introduced in the local
hybrid paper search, is the metadata validation against XML schema. The stor-
age for the local hybrid paper search is managed by database administrators, but
ordinary users can upload their own data to the database of the integration hub.
We utilize an Oracle DB operation to check the validity of metadata presented
in XML instances against a registered XML schema. The XML schema for our
hybrid paper search is shown in figure 4.



<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="bibliography">

<xs:complexType>

<xs:sequence>

<xs:element name="authors">

<xs:complexType>

<xs:sequence>

<xs:element name="author" type="xs:string"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="title" type="xs:string"/>

<xs:element name="source" type="xs:string"/>

<xs:element name="year" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Fig. 4. An XML Schema Example for Hybrid Paper Search

We demonstrate a data integration hub on the central DBMS using message-
oriented middleware. This integration hub is an integrated version of the hybrid
paper search introduced in section 2.1. The general architecture of a data inte-
gration hub is summarized in figure 5. Those clients can communicate with an
integrant through a message broker—NaradaBrokering [7]. This broker includes
JMS compliant topic-based communication—a publish/subscribe model. As in
the read-only query case, clients are publishers and the integrant is a subscriber.
Clients and the integrant use the same topic. The integrant manages uploading
of the metadata and unstructured data, query wrapping, and file transfer. Re-
quests are classified by the job property, which is attached to the message sent
from client to integrant. A temporary topic is also delivered to the integrant.
This temporary topic provides unique identification for the requester client, and
the integrant can return back to the client by publishing the message on a dy-
namic virtual channel—a temporary topic whose session object was attached to
the message.

We use different message types for each service request, as follows:

– Upload request: initially the client should request to upload to the integrant,
before the unstructured data files are sent. The message for this request in-
cludes a file name of unstructured data, metadata, and unique client user
name. They are string contents in a MapMessage type message. The in-
tegrant checks the validity of the metadata against XML schema as clients
may provide no well-formed or valid data. The central database should avoid



Message

  Broker
Integrant

 

 Database

       or

File System

Client Client Client

 

. . . . . .

Fig. 5. An Integration Hub Architecture

redundancy for the unstructured data stored in a file system. The name and
directory of the unstructured data, which is generated by combining the user
name and the file name, is used for a primary key.

– File upload: after an upload request is granted by the integrant, the client
can send a file for the unstructured data. For the file uploading, we use a
ByteMessage type message, which is appropriate for sending a stream of
uninterpreted bytes. The client sends a header message first, and the file is
published buffer by buffer. A job property, a file name, a user name, and
a temporary topic are included in the header message. A JMS message has
a unique ID when it is created, and the ID is attached to each message.
The integrant can classify those file upload messages by extracting the mes-
sage ID. This mechanism is necessary because several file uploads can occur
simultaneously.

– Query request: clients are publishers for a query topic, and the integrant
subscribe on the same topic. A MapMessage type message, which includes
query parameters and properties, is published to the integrant. The query
results are delivered back to the inquiry client subscribed to a temporary
topic.

– Download request: the target unstructured data in a file can be obtained
from the query request. The client subsequently requests a file download
with a MapMessage type message that includes the file name and a tempo-
rary topic. The listener on the client then captures the ByteMessage type
message published from the integrant, and the target file is written mes-
sage by message on the client machine. Each message includes the file name
property. The message broker is responsible for preserving order of message
transfer.

The database schema of our data integration hub are similar to those in
the hybrid paper search in figure 3, but there is an additional table for the
file uploading for the unstructured data—a temporary file locator table. Our
system allows the file upload on a temporary directory only, and moves the



files to the designated directory later. When a user request a file upload and
incidentally the same file name already exists, a new file name is assigned for
the final destination by the integrant. The original file name is stored in the
table for metadata, but the actual file name is stored in the unstructured data
table. We assume that a user does not assign the same file name to two or more
different unstructured data. A naming and directory for each row in the paper
metadata table is generated from combining the unique user name and the file
name, and it makes the naming and directory to a potential primary key.

Each data integration hub has a message broker and an integrant. A group of
data integration hubs may provide a global search over a distributed information
system by using the cooperative network features built in to NaradaBrokering,
or by using an additional network layer—a peer-to-peer overlay network.

4 Conclusion

In this paper we described our approaches to hybrid search at a local level with
a case study of a hybrid paper search. Our demonstration showed the possibil-
ity of the hybrid search paradigm for a practical semantic integration. We had
another case study of a data integration hub, which is an application commu-
nicating through the message broker with a centralized control. The integration
hub can be a search service node in a distributed database, or a peer in a peer-to-
peer overlay network under more scalable environment [4, 5]. This scalable gen-
eralization may have a practical bridging role for information search—providing
semantic value through metadata whose implementation are simpler than those
of the Semantic Web.

References

1. Apache Software Foundation. Jakarta Lucene. World Wide Web.
http://jakarta.apache.org/lucene/.

2. Apache Software Foundation. Xindice. World Wide Web.
http://xml.apache.org/xindice/.

3. J. Kim, O. Balsoy, M. Pierce, and G. Fox. Design of a Hybrid Search in the Online
Knowledge Center. In Proceedings of the IASTED International Conference on
Information and Knowledge Sharing, November 2002.

4. J. Kim and G. Fox. A Hybrid Keyword Search across Peer-to-Peer Federated
Databases. In Proceedings of East-European Conference on Advances in Databases
and Information Systems (ADBIS), September 2004.

5. J. Kim and G. Fox. Scalable Hybrid Search on Distributed Databases. In Proceed-
ings of International Workshop of Autonomic Distributed Data and Storage Systems
Management, volume 3516 of Lecture Notes in Computer Science. Springer, May
2005.

6. Oracle Corporation. Oracle9i Application Developers Guide—XML, June 2001.
7. S. Pallickara and G. C. Fox. NaradaBrokering: A Distributed Middleware Frame-

work and Architecture for Enabling Durable Peer-to-Peer Grids. In Proceedings of
International Middleware Conference, June 2003.


