
 

 

1 

 

Abstract—In the last few years, Java gain popularity in 

processing “big data” mostly with Apache big data stack – a 

collection of open source frameworks dealing with abundant data, 

which includes several popular systems such as Hadoop, Hadoop 

Distributed File System (HDFS), and Spark. Efforts have been 

made to introduce Java to High Performance Computing (HPC) 

as well in the past, but were not embraced by the community due 

to performance concerns. However, with continuous 

improvements in Java performance an increasing interest has 

been placed on Java message passing support in HPC. We support 

this idea and show its feasibility in solving real world data 

analytics problems. 

 
Index Terms— Message passing, Java, HPC 

 

I. INTRODUCTION 

ESSAGE passing has been the de-facto model in 

realizing distributed memory parallelism [1] where 

Message Passing Interface (MPI) with its implementations such 

as MPICH2 [2] and OpenMPI [3] have been successful in 

producing high performance applications [4]. We use message 

passing with threads [5] in our data analytics applications on 

Windows High Performance Computing (HPC) environments 

[6] using MPI.NET [7] and Microsoft’s Task Parallel Library 

(TPL) [8]. However, the number of available Windows HPC 

systems are limited and our attempts to run these on traditional 

Linux based HPC clusters using Mono – a cross platform .NET 

development framework – have been unsuccessful due to poor 

performance. Therefore, we decided to migrate our applications 

to Java for reasons 1) productivity offered by Java and its 

ecosystem; and 2) emerging success of Java in HPC [9]. In this 

paper, we present our experience in evaluating the performance 

of our parallel deterministic annealing clustering program 

(DAVS) [10] and micro benchmark results for two Java 

message passing frameworks – OpenMPI with Java binding and 

FastMPJ [11] – compared against native OpenMPI and 

MPI.NET. The results show clear improvement of application 

performance over C# with MPI.NET and near native 

performance in micro benchmarks. 

 
 

II. RELATED WORK 

Message passing support for Java can be classified as pure 

Java implementations or Java bindings for existing native MPI 

libraries (i.e. wrapper implementations). Pure Java 

implementations advocate portability, but may not be as 

efficient as Java bindings that call native MPI (see III.C and 

[11]). There are two proposed Application Programming 

Interfaces (API) for Java message passing – mpiJava 1.2 [12] 

and Java Grande Forum (JGF) Message Passing interface for 

Java (MPJ) [13]. However, there are implementations that 

follow custom API as well [9]. 

Performance of Java MPI support has been studied with 

different implementations and recently in [11, 14]. The focus of 

these studies is to evaluate MPI kernel operations and little or 

no information given on applying Java MPI to scientific 

applications. However, there is an increasing interest [15] on 

using MPI with large scale data analytics frameworks such as 

Apache Hadoop [16]. MR+ [17] is a framework with similar 

intent, which allows Hadoop MapReduce [18] programs to run 

on any cluster under any resource manager while providing 

capabilities of MPI as well.  

III. TECHNICAL EVALUATION 

The DAVS code is about 15k lines of C# code and to evaluate 

performance on Java we used a combination of commercially 

available code converter [19] and carefully inspected manual 

rewrites to port the C# code to Java. Furthermore, we performed 

a series of serial and parallel tests to confirm correctness is 

preserved during the migration, prior to evaluating 

performance.  

Our interest in this experiment was to compare application 

performance when run on Linux based HPC clusters against 

results on Windows HPC environments. We noticed from initial 

runs that two of the MPI operations – allreduce, and send and 

receive – contribute to the most of inter-process 

communication. Therefore, we extended the evaluation by 

performing micro benchmarks for these, which further 

supported our choice to use Java. 

Evaluation of Java Message Passing in High 

Performance Data Analytics 

Saliya Ekanayake, Geoffrey Fox 

School of Informatics and Computing 

Indiana University 

Bloomington, Indiana, USA 

{sekanaya, gcf}@indiana.edu 

M 



 

 

2 

A. Computer Systems 

We used two Indiana University clusters, Madrid and 

Tempest, and one FutureGrid [20] cluster – India, as described 

below. 

Tempest: 32 nodes, each has 4 Intel Xeon E7450 CPUs at 

2.40GHz with 6 cores, totaling 24 cores per node; 48 GB node 

memory and 20Gbps Infiniband (IB) network connection. It 

runs Windows Server 2008 R2 HPC Edition – version 6.1 

(Build 7601: Service Pack 1). 

Madrid: 8 nodes, each has 4 AMD Opteron 8356 at 

2.30GHz with 4 cores, totaling 16 cores per node; 16GB node 

memory and 1Gbps Ethernet network connection. It runs Red 

Hat Enterprise Linux Server release 6.5 

FutureGrid (India): 128 nodes, each has 2 Intel Xeon 

X5550 CPUs at 2.66GHz with 4 cores, totaling 8 cores per 

node; 24GB node memory and 20Gbps IB network connection. 

It runs Red Hat Enterprise Linux Server release 5.10. 

B. Software Environments 

We used .NET 4.0 runtime and MPI.NET 1.0.0 for C# based 

tests. DAVS Java version uses a novel parallel tasks library 

called Habanero Java (HJ) library from Rice University [21, 

22], which requires Java 8.  Therefore, we used an early access 

(EA) release – build 1.8.0-ea-b118. Early access releases may 

not be well optimized, but doing a quick test with threading 

switched off we could confirm DAVS performs equally well on 

stable Java 7 and Java 8 EA.  

There have been several message passing frameworks for 

Java [23], but due to the lack of support for IB network and to 

other drawbacks discussed in [11], we decided to evaluate 

OpenMPI with its Java binding and FastMPJ, which is a pure 

Java implementation of mpiJava 1.2 [12] specification. 

OpenMPI’s Java binding [24] is an adaptation from the original 

mpiJava library [25].  However, OpenMPI community has 

recently introduced major changes to its API, and internals, 

especially removing MPI.OBJECT type and adding support for 

direct buffers in Java. These changes happened while we were 

evaluating DAVS, thus we tested OpenMPI Java binding in one 

of its original (nightly snapshot version 1.9a1r28881) and 

updated forms (source tree revision 30301). We will refer to 

these as OMPI-nightly and OMPI-trunk for simplicity.  

C. MPI Micro Benchmarks  

We based our experiments on Ohio MicroBenchmark 

(OMB) suite [26], which is intended to test native MPI 

implementations’ performance. Therefore, we implemented the 

selected allreduce, and send and receive tests in all three Java 

MPI flavors and MPI.NET, in order to test Java and C# MPI 

implementations.  

Fig. 1 presents the pseudo code for OMB allreduce test. Note 

the syntax of MPI operations do not adhere to a particular 

language and the number of actual parameters are cut short for 

clarity. Also, depending on the language and MPI framework 

used, the implementation details such as data structures used 

and buffer allocation were different from one another.  

 
Fig. 2.  Performance of MPI allreduce operation 

5

50

500

5000

50000

4
B

1
6

B

6
4

B

2
5

6
B

1
K

B

4
K

B

1
6

K
B

6
4

K
B

2
5

6
K

B

1
M

B

4
M

B

A
ve

ra
ge

 t
im

e 
(u

s)

Message size (bytes)

MPI.NET C# in Tempest
FastMPJ Java in FG
OMPI-nightly Java FG
OMPI-trunk Java FG
OMPI-trunk C FG
OMPI-nightly C FG

 

Fig. 1  Pseudo code for allreduce benchmark 

Input: maxMsgSize // maximum message size in bytes 
  
𝑚𝑠𝑔𝑆𝑖𝑧𝑒𝐿 = 8192 // messages to be considered large  
𝑛𝑢𝑚𝐼𝑡𝑟 = 1000 // iterations for small messages 
𝑛𝑢𝑚𝐼𝑡𝑟𝐿 = 100 //iterations for large messages 
𝑠𝑘𝑖𝑝 = 200 // skip this many for small messages 
𝑠𝑘𝑖𝑝𝐿 = 10 // skip this many for large messages 

   

𝑐𝑜𝑚𝑚 = MPI_COMM_WORLD 
𝑚𝑒 = MPI_Comm_rank (comm) 
𝑠𝑖𝑧𝑒 = MPI_Comm_size (comm) 
  
𝑠𝑏𝑢𝑓𝑓[𝑚𝑎𝑥𝑀𝑠𝑔𝑆𝑖𝑧𝑒/4] // float array –initialized to 1.0  
𝑟𝑏𝑢𝑓𝑓[𝑚𝑎𝑥𝑀𝑠𝑔𝑆𝑖𝑧𝑒/4] // float array –initialized to 0.0 
  

For 𝑖 = 1 to 𝑖 ≤ 𝑚𝑎𝑥𝑀𝑠𝑔𝑆𝑖𝑧𝑒/4  

 If 𝑖 > 𝑚𝑠𝑔𝑆𝑖𝑧𝑒𝐿 
  𝑠𝑘𝑖𝑝 = 𝑠𝑘𝑖𝑝𝐿 
 𝑛𝑢𝑚𝐼𝑡𝑟 = 𝑛𝑢𝑚𝐼𝑡𝑟𝐿 
 MPI_Barrier (𝑐𝑜𝑚𝑚) 
 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.0 
 For 𝑗 = 0 to 𝑗 < 𝑛𝑢𝑚𝐼𝑡𝑟 + 𝑠𝑘𝑖𝑝 
 𝑡 = MPI_Wtime ( ) 

MPI_Allreduce (𝑠𝑏𝑢𝑓𝑓,𝑟𝑏𝑢𝑓𝑓,𝑖  

MPI_SUM,𝑐𝑜𝑚𝑚) 

 If 𝑗 ≥ 𝑠𝑘𝑖𝑝 

   𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛+=MPI_Wtime ( ) −  𝑡  
 MPI_Barrier (𝑐𝑜𝑚𝑚) 
 𝑗 = 𝑗 + 1 
 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛/𝑛𝑢𝑚𝐼𝑡𝑟 

 𝑎𝑣𝑔𝑇𝑖𝑚𝑒 =  MPI_Reduce (𝑙𝑎𝑡𝑒𝑛𝑐𝑦, MPI_SUM,0)  
 If 𝑚𝑒 == 0 
  Print (𝑖, 𝑎𝑣𝑔𝑇𝑖𝑚𝑒) 
  𝑖 = 𝑖 ∗ 2 
 MPI_Barrier (𝑐𝑜𝑚𝑚) 



 

 

3 

 Fig. 2 shows the results of allreduce benchmark for different 

MPI implementations with message size ranging from 4 bytes 

(B) to 8 megabytes (MB). These are averaged values over 

patterns 1x1x8, 1x2x8, and 1x4x8 where pattern format is 

number of threads per process x number of processes per node 

x  number of nodes (i.e. TxPxN). The best performance came 

with C versions of OpenMPI, but interestingly OMPI-trunk 

Java performance overlaps on these indicating its near zero 

overhead. The older, OMPI-nightly Java performance is near as 

well, but shows more overhead than its successor. FastMPJ 

performance is better than MPI.NET, but slower than OpenMPI 

versions. The slowest performance came with MPI.NET, which 

may be improved with further tuning, but as our focus was to 

evaluate Java versions we did not proceed in this direction. 

 We experienced a similar pattern with MPI send and receive 

benchmark (Fig. 3) as shown in Fig. 4. 

Note message sizes were from 0B to 1MB for this test, where 

0B time corresponds to average latency. 

We performed tests in Fig. 2 and Fig. 4 on Tempest and 

FutreGrid-India as these were the two clusters with Infiniband 

interconnect. However, after deciding OMPI-trunk as the best 

performer, we conducted these two benchmarks on Madrid as 

well to compare performance against usual Ethernet 

connection. Fig. 5 and Fig. 6 show the clear advantage of using 

Infiniband with performance well above 10 times for smaller 

messages and around 5-8 times for larger messages compared 

to Ethernet.  

D. Application Performance with MPI 

We decided to apply DAVS to the same “peak-matching” 

problem [10] that its C# variant used to solve, so we could 

verify accuracy and compare performance. We performed 

clustering of the LC-MS data [10] in two modes – Charge2 and 

Charge5 – where the former processed 241605 points and found 

on average 24.5k clusters. Charge5 mode handled 16747 points 

producing an average of 28k clusters. 

These modes exercises different execution flows in DAVS 

where Charge2 is more intense in both computation and 

communication than Charge5. DAVS supports threading too 

which, we have studied separately in section E. Also note tests 

based on OMPI Java versions were done on FutureGrid-India 

and MPI.NET C# on Tempest in following figures. 

 

Fig. 4  Performance of MPI send and receive operations 

 
Fig. 5  Performance of MPI allreduce on Infiniband and Ethernet 

1

10000
0

B

2
B

8
B

3
2

B

1
2

8
B

5
1

2
B

2
K

B

8
K

B

3
2

K
B

1
2

8
K

B

5
1

2
K

BA
ve

ra
ge

 t
im

e 
(u

s)

Message size (bytes)

MPI.NET C# in Tempest
FastMPJ Java in FG
OMPI-nightly Java FG
OMPI-trunk Java FG
OMPI-trunk C FG

1

100

10000

1000000

4
B

1
6

B

6
4

B

2
5

6
B

1
K

B

4
K

B

1
6

K
B

6
4

K
B

2
5

6
K

B

1
M

B

4
M

BA
ve

ra
ge

 T
im

e 
(u

s)

Message Size (bytes)

OMPI-trunk C Madrid
OMPI-trunk Java Madrid
OMPI-trunk C FG
OMPI-trunk Java FG

 

Fig. 3  Pseudo code for send and receive benchmark 

 

Input: maxMsgSize // maximum message size in bytes 
  
𝑚𝑠𝑔𝑆𝑖𝑧𝑒𝐿 = 8192 // messages to be considered large  
𝑛𝑢𝑚𝐼𝑡𝑟 = 1000 // iterations for small messages 
𝑛𝑢𝑚𝐼𝑡𝑟𝐿 = 100 //iterations for large messages 
𝑠𝑘𝑖𝑝 = 200 // skip this many for small messages 
𝑠𝑘𝑖𝑝𝐿 = 10 // skip this many for large messages 

𝑐𝑜𝑚𝑚 = MPI_COMM_WORLD 
𝑚𝑒 = MPI_Comm_rank (comm) 
𝑠𝑖𝑧𝑒 = MPI_Comm_size (comm) 
  
𝑠𝑏𝑢𝑓𝑓[𝑚𝑎𝑥𝑀𝑠𝑔𝑆𝑖𝑧𝑒] // byte array –initialized to 1.0  
𝑟𝑏𝑢𝑓𝑓[𝑚𝑎𝑥𝑀𝑠𝑔𝑆𝑖𝑧𝑒] // byte array –initialized to 0.0 
  

For 𝑖 = 0 to 𝑖 ≤ 𝑚𝑎𝑥𝑀𝑠𝑔𝑆𝑖𝑧𝑒  

 If 𝑖 > 𝑚𝑠𝑔𝑆𝑖𝑧𝑒𝐿 
  𝑠𝑘𝑖𝑝 = 𝑠𝑘𝑖𝑝𝐿 
 𝑛𝑢𝑚𝐼𝑡𝑟 = 𝑛𝑢𝑚𝐼𝑡𝑟𝐿 
 MPI_Barrier (𝑐𝑜𝑚𝑚) 
 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.0 

 If 𝑚𝑒 == 0 

 For 𝑗 = 0 to 𝑗 < 𝑛𝑢𝑚𝐼𝑡𝑟 + 𝑠𝑘𝑖𝑝 

 If 𝑗 == 𝑠𝑘𝑖𝑝 
 𝑡 = MPI_Wtime ( ) 

MPI_Send (𝑠𝑏𝑢𝑓𝑓, 𝑖,1,1) 

MPI_Recv (r𝑏𝑢𝑓𝑓, 𝑖,1,1) 

  𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛+=MPI_Wtime ( ) −  𝑡  

 Else If 𝑚𝑒 == 1 

 For 𝑗 = 0 to 𝑗 < 𝑛𝑢𝑚𝐼𝑡𝑟 + 𝑠𝑘𝑖𝑝 
 MPI_Recv (𝑟𝑏𝑢𝑓𝑓, 𝑖,0,1) 

MPI_Send sr𝑏𝑢𝑓𝑓, 𝑖,0,1) 
 If 𝑚𝑒 == 0 

  𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛/2 ∗ 𝑛𝑢𝑚𝐼𝑡𝑟 
  Print (𝑖, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦) 
  𝑖 = 𝑖 == 0 ? 1 ∶  𝑖 ∗ 2 
 MPI_Barrier (𝑐𝑜𝑚𝑚) 



 

 

4 

 

Fig. 6  Performance of MPI send and receive on Infiniband and 

Ethernet 

 
Fig. 7  DAVS Charge5 performance 

 
Fig. 8  DAVS Charge5 speedup 

 
Fig. 9  DAVS Charge2 performance 

 
Fig. 10  DAVS Charge2 speedup 

Fig. 7 and Fig. 8 show Charge5 performance and speedup 

under different MPI libraries. OMPI-trunk happens to give the 

best performance and it achieves nearly double the performance 

in all cases compared to MPI.NET. Charge2 performance and 

speedup show similar results as given in Fig. 9 and Fig. 10. Note 

we could not test pattern 1x8x1 due to insufficient memory. 

E. Application Performance with Threads 

DAVS has the option to utilize threads for its pleasingly 

parallel shared memory computations. These code segments 

follow a fork-join style 𝑓𝑜𝑟𝑎𝑙𝑙 loops, which are well supported 

in HJ library. It is worth noting that DAVS semantics for 

parallelism with threads and message passing are different such 

that they complement rather replace one another. Therefore, 

comparing performance of 𝑁-way MPI processes versus 𝑁-way 

threads does not make sense. Instead, what is studied in this 

paper is the performance variance with threads for different 

number of MPI processes.  

 
Fig. 11  DAVS Charge2 performance with threads 

 
Fig. 12  DAVS Charge5 performance with threads 

1

10

100

1000

10000

0
B

2
B

8
B

3
2

B

1
2

8
B

5
1

2
B

2
K

B

8
K

B

3
2

K
B

1
2

8
K

B

5
1

2
K

BA
ve

ra
ge

 T
im

e 
(u

s)

Message Size (bytes)

OMPI-trunk C Madrid
OMPI-trunk Java Madrid
OMPI-trunk C FG
OMPI-trunk Java FG

0

0.2

0.4

0.6

0.8

1

1.2

1x1x1 1x1x2 1x2x1 1x1x4 1x4x1 1x1x8 1x2x4 1x4x2 1x8x1

Ti
m

e 
(h

o
u

rs
)

TxPxN

MPI.NET

OMPI-nightly

OMPI-trunk

1

2

3

4

5

6

1x1x1 1x1x2 1x2x1 1x1x4 1x4x1 1x1x8 1x2x4 1x4x2 1x8x1

Sp
ee

d
u

p

TxPxN

MPI.NET
OMPI-nightly

OMPI-trunk

0

5

10

15

20

25

30

1x1x1 1x1x2 1x2x1 1x1x4 1x4x1 1x1x8 1x2x4 1x4x2

Ti
m

e 
(h

o
u

rs
)

TxPxN

MPI.NET

OMPI-nightly

OMPI-trunk

1

2

3

4

5

6

1x1x1 1x1x2 1x2x1 1x1x4 1x4x1 1x1x8 1x2x4 1x4x2

Sp
ee

d
u

p

TxPxN

MPI.NET

OMPI-nightly

OMPI-trunk

0

1

2

3

4

5

2x1x8 4x1x8 8x1x8 1x2x8 4x2x8 1x4x8 2x4x8 1x8x8

Ti
m

e 
(h

o
u

rs
)

TxPxN

MPI.NET

OMPI-nightly

OMPI-trunk

0

0.1

0.2

0.3

0.4

2x1x8 4x1x8 8x1x8 1x2x8 4x2x8 1x4x8 2x4x8

Ti
m

e 
(h

o
u

rs
)

TxPxN

MPI.NET

OMPI-nightly

OMPI-trunk



 

 

5 

 Fig. 11 and Fig. 12 show the performance of DAVS 

application with threads in its Charge2 and Charge5 modes 

respectively. We encountered intermittent errors with OMPI-

trunk when running 8 processes per node and are currently 

working for a resolution with help from OpenMPI community. 

Overall OMPI-nightly and OMPI-trunk versions show similar 

performance and are about two times better than MPI.NET. 

OpenMPI is continuously improving its process binding 

support, which affects the behavior of threads. Therefore, we 

still need to perform additional testing to fully comprehend the 

behavior with threads.  

F. Single Node Application Performance 

While it is important to understand behavior with MPI and 

threads on multiple nodes, it is essential to study the single node 

performance of DAVS in different environments as a baseline.  

 
Fig. 13 DAVS Charge2 performance on single node 

 
Fig. 14  DAVS Charge6 performance on single node 

 
Fig. 15  DAVS Charge6 performance on single node with multiple 

processes 

Fig. 13 shows Charge2 serial performance on Madrid, 

FutureGrid-India, and Tempest. Note, we have shown 

performance with OMPI-trunk only for Java cases as this was 

the best performer and 1x1x1 does not use any MPI. Fig. 14 

shows similar performance for a different mode – Charge6 – in 

DAVS, again run as 1x1x1. Madrid used to be a Windows HPC 

cluster and we had results from an earlier run for Charge6, 

which tested performance of 1x4x1. We compare that with 

other clusters and MPI frameworks in Fig. 15.  

SUMMARY 

 Scientific applications written in C, C++, and Fortran have 

embraced MPI since its inception and various attempts have 

been made over the years to establish this relationship for 

applications written in Java. However, only few 

implementations such as OpenMPI and FastMPJ are in active 

development with support for fast interconnect systems. 

OpenMPI in particular has recently introduced improvements 

to its Java binding to close the gap between Java and native 

performance. The kernel benchmarks we performed agree with 

this and depicts latest OpenMPI Java binding as the best among 

selected Java MPI implementations. 

 Our aim of this effort has been to migrate existing C# based 

code to Java in hope of running on traditional HPC clusters 

while utilizing the rich programming environment of Java. The 

initial runs of DAVS show promising performance and we 

expect to complement this work by adding support for threads 

in near future. 

ACKNOWLEDGEMENT 

 We like to express our sincere gratitude to Prof. Vivek Sarkar 

and his team at Rice University for giving us access and 

continuous support for HJ library, which made it possible to 

incorporate threads in DAVS. We are equally thankful to Prof. 

Guillermo López Taboada for giving us free unrestricted access 

to commercially available FastMPJ MPI library. We are also 

thankful to FutureGrid project and its support team for their 

support with HPC systems. 

REFERENCES 

[1] LUSK, E. and YELICK, K. LANGUAGES FOR HIGH-PRODUCTIVITY 

COMPUTING: THE DARPA HPCS LANGUAGE PROJECT. Parallel 
Processing Letters, 17, 01 2007), 89-102. 

[2] Laboratory, A. N. MPICH2,. City. 

[3] Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J., 
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R., Daniel, D., 

Graham, R. and Woodall, T. Open MPI: Goals, Concept, and Design of a Next 

Generation MPI Implementation. Springer Berlin Heidelberg, City, 2004. 
[4] Gropp, W. Learning from the Success of MPI. In Proceedings of the 

Proceedings of the 8th International Conference on High Performance 

Computing (2001). Springer-Verlag, [insert City of Publication],[insert 2001 of 
Publication].  

[5] Ekanayake, S. Survey on High Productivity Computing Systems (HPCS) 

Languages. Pervasive Technology Institute, Indiana University, Bloomington, 
2013.  

[6] Qiu, J., Beason, S., Bae, S.-H., Ekanayake, S. and Fox, G. Performance of 

Windows Multicore Systems on Threading and MPI. In Proceedings of the 
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, 

Cloud and Grid Computing (2010). IEEE Computer Society, [insert City of 

Publication],[insert 2010 of Publication].  
[7] Gregor, D. and Lumsdaine, A. Design and implementation of a high-

performance MPI for C\# and the common language infrastructure. In 

Proceedings of the Proceedings of the 13th ACM SIGPLAN Symposium on 
Principles and practice of parallel programming (Salt Lake City, UT, USA, 

2008). ACM, [insert City of Publication],[insert 2008 of Publication].  

[8] Daan Leijen, J. H. Optimize Managed Code For Multi-Core Machines. City. 

0.00

10.00

20.00

30.00

1x1x1

Ti
m

e 
(h

o
u

rs
)

TxPxN

OMPI-trunk Madrid

OMPI-trunk FG

MPI.NET Tempest

0

20

40

60

80

100

120

140

160

1x1x1

Ti
m

e 
(s

)

TxPxN

OMPI-trunk Madrid

OMPI-trunk FG

MPI.NET Tempest

0

20

40

60

80

100

120

140

1x4x1

Ti
m

e 
(s

)

TxPxN

MPI.NET Madrid

OMPI-trunk FG

MPI.NET Tempest



 

 

6 

[9] Taboada, G. L., Touri, J., #241, Ram, #243 and Doallo, n. Java for high 

performance computing: assessment of current research and practice. In 
Proceedings of the Proceedings of the 7th International Conference on 

Principles and Practice of Programming in Java (Calgary, Alberta, Canada, 

2009). ACM, [insert City of Publication],[insert 2009 of Publication].  
[10] Fox, G., Mani, D. R. and Pyne, S. Parallel deterministic annealing 

clustering and its application to LC-MS data analysis. IEEE, City, 2013. 

[11] Expósito, R., Ramos, S., Taboada, G., Touriño, J. and Doallo, R. FastMPJ: 
a scalable and efficient Java message-passing library. Cluster 

Computing(2014/02/06 2014), 1-20. 

[12] Bryan Carpenter, G. F., Sung-Hoon Ko and Sang Lim. mpiJava 1.2: API 
Specification. 1999.  

[13] Carpenter, B., Getov, V., Judd, G., Skjellum, A. and Fox, G. MPJ: MPI-

like message passing for Java. Concurrency: Practice and Experience, 12, 11 
2000), 1019-1038. 

[14] Taboada, G. L., Tourino, J. and Doallo, R. Performance analysis of Java 

message-passing libraries on fast Ethernet, Myrinet and SCI clusters. City, 
2003. 

[15] Squyres, J. Resurrecting MPI and Java. City, 2012. 

[16] Tom White Hadoop: The Definitive Guide. Yahoo Press; Second Edition 
edition, 2010. 

[17] Ralph H. Castain, W. T. MR+ A Technical Overview. 2012.  

[18] Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on 
Large Clusters. Sixth Symposium on Operating Systems Design and 

Implementation2004), 137-150. 

[19] Inc., T. S. S. C# to Java Converter. City. 
[20] von Laszewski, G., Fox, G. C., Fugang, W., Younge, A. J., Kulshrestha, 

A., Pike, G. G., Smith, W., Vo, x, ckler, J., Figueiredo, R. J., Fortes, J. and 
Keahey, K. Design of the FutureGrid experiment management framework. 

City, 2010. 

[21] Cav, V., #233, Zhao, J., Shirako, J. and Sarkar, V. Habanero-Java: the new 
adventures of old X10. In Proceedings of the Proceedings of the 9th 

International Conference on Principles and Practice of Programming in Java 

(Kongens Lyngby, Denmark, 2011). ACM, [insert City of Publication],[insert 
2011 of Publication].  

[22] Sarkar, V. a. I., Shams Mahmood HJ Library. City. 

[23] Taboada, G. L., Ramos, S., Exp, R. R., #243, sito, Touri, J., #241, Ram, 
#243 and Doallo, n. Java in the High Performance Computing arena: Research, 

practice and experience. Sci. Comput. Program., 78, 5 2013), 425-444. 

[24] Project, T. O. M. FAQ:  Where did the Java interface come from? , City. 
[25] Baker, M., Carpenter, B., Fox, G., Hoon Ko, S. and Lim, S. mpiJava: An 

object-oriented java interface to MPI. Springer Berlin Heidelberg, City, 1999. 

[26] Laboratory, T. O. S. U. s. N.-B. C. and (NBCL) OMB (OSU Micro-
Benchmarks). City. 

 

 


