
Interpolative Multidimensional Scaling Techniques for the 
Identification of Clusters in Very Large Sequence Sets 

 

Adam Hughes
1, §

, Yang Ruan
1,2

, Saliya Ekanayake
1,2

, Seung-Hee Bae
1,2

, Qunfeng Dong
3
, Mina 

Rho
2
, Judy Qiu

1,2
, Geoffrey Fox 

1,2
 

 

1
Pervasive Technology Institute, Indiana University, Bloomington, IN 47408, US

 

2
School of Informatics and Computing, Indiana University, Bloomington, IN 47408, US

 

3
Department of Biological Sciences, University of North Texas, Denton, TX 76203, US 

 

§
Corresponding author

 

 

Email addresses: 

AH: adalhugh@indiana.edu  

YR : yangruan@indiana.edu  

SE: sekanaya@indiana.edu  

SHB: sebae@indiana.edu  

QD: Qunfeng.Dong@unt.edu   

MR: mrho@indiana.edu  

JQ: xqiu@indiana.edu   

GF: gcf@indiana.edu  

mailto:adalhugh@indiana.edu
mailto:yangruan@indiana.edu
mailto:sekanaya@indiana.edu
mailto:sebae@indiana.edu
mailto:Qunfeng.Dong@unt.edu
mailto:mrho@indiana.edu
mailto:xqiu@indiana.edu
mailto:gcf@indiana.edu


Abstract  

Background 

Modern pyrosequencing techniques make it possible to study complex bacterial populations, 

such as 16S rRNA, directly from environmental or clinical samples without the need for 

laboratory purification. Alignment of sequences across the resultant large data sets (100,000+ 

sequences) is of particular interest for the purpose of identifying potential gene clusters and 

families, but such analysis represents a daunting computational task.   The aim of this work is the 

development of an efficient pipeline for the clustering of large sequence read sets.  

Methods 

Pairwise alignment techniques are used here to calculate genetic distances between sequence 

pairs.  These methods are pleasingly parallel and have been shown to more accurately reflect 

accurate genetic distances in highly variable regions of rRNA genes than do traditional multiple 

sequence alignment (MSA) approaches.   By utilizing Needleman-Wunsch (NW) pairwise 

alignment in conjunction with novel implementations of interpolative multidimensional scaling 

(MDS), we have developed an effective method for visualizing massive biosequence data sets 

and quickly identifying potential gene clusters.  

Results 

This study demonstrates the use of interpolative MDS to obtain clustering results that are 

qualitatively similar to those obtained through full MDS, but with substantial cost savings.  In 

particular, the wall clock time required to cluster a set of 100,000 sequences has been reduced 

from seven hours to less than one hour through the use of interpolative MDS.  

Conclusions 



Although work remains to be done in selecting the optimal training set size for interpolative 

MDS, substantial computational cost savings will allow us to cluster much larger sequence sets 

in the future.   

Background 
The continued advancement of pyrosequencing techniques has made it possible for scientists to 

study complex bacterial populations, such as 16S rRNA, directly from environmental or clinical 

samples without the need for involved and time-consuming laboratory purification[1]. As a 

result, there has been a rapid accumulation of raw sequence reads awaiting analysis in recent 

years, placing an extreme burden on existing software systems.  Alignment of sequences across 

these large data sets (100,000+ sequences) is of particular interest for the purposes of sequence 

classification and identification of potential gene clusters and families, but such analysis cannot 

be completed manually and represents a daunting computational task.   The aim of this work is 

the development of an efficient and effective pipeline for clustering large quantities of raw 

biosequence reads. 

Methods 
One technique often used in sequence clustering is multiple sequence alignment (MSA), which 

employs heuristic methods in an attempt to determine optimal alignments across an entire 

sample. However, global pairwise sequence alignment algorithms have previously been reported 

to better identify microbial richness in genomes with hypervariable regions, like 16S rRNA, than 

do MSA techniques, while also offering superior computational scaling[1].   For these studies, 

genetic distances produced by the Needleman-Wunsch pairwise aligner algorithm [2] were 

converted to Cartesian coordinates through Multidimensional Scaling (MDS) for the purpose of 

clustering and visualization[3].  



This basic clustering pipeline is shown in Figure 1, and it has been used to good effect for 

sample sizes of 100,000 or fewer sequences with less than 200 bases in each.   However, the 

computational complexity of both the distance calculation and multidimensional scaling is 

O(N
2
), where N is the number of sequences, rendering the overall process untenable as the 

sample size grows very large. 

To overcome these performance bottlenecks, we have employed an interpolative MDS algorithm 

[4], wherein a small, in-sample subset of sequences is subjected to full NW and MDS 

calculations and then the results are used to interpolate Cartesian coordinates for the remaining, 

out-of-sample sequences from the larger data set.  This reduces the computational complexity to 

O(M
2
) + O(M*(N-M)) for both distance and scaling operations, where N is the number of 

sequences in the initial data set, M is the number of in-sample sequences, and N-M is the number 

of out-of-sample sequences.  The basic interpolative MDS scheme is illustrated in Figure 2. 

To further enhance computational throughput and ease job management, we implemented the 

updated pipeline utilizing the Twister Iterative MapReduce runtime [5] to take advantage of the 

map-reduce pattern inherent in these calculations.  Twister, developed in our lab, also enables us 

to target large, Linux-based compute clusters [6].  This scaled-up pipeline is shown in Figure 3.  

Results and Discussion 

Full calculation on entire data set 

Figure 4 shows the results of running full Needleman-Wunsch (NW) and Multidimensional 

Scaling (MDS) calculations on a set of 100,000 raw 16S rRNA sequence reads.  The results of 

this calculation fit well with the expected groupings for this genome [7,8].  The initial clustering 

calculation colors the predicted sequences in a given grouping, while the MDS calculation 

produces Cartesian coordinates for each sequence.  As Figure 4 shows, the spatial and colored 



results correspond to the same sequences, indicating that the combination of  NW and MDS 

produce reasonable sequence clusters. 

Interpolation: 50000 in-sample sequences, 50000 out-of-sample sequences 

Figure 5 shows the results of running interpolative MDS and NW on the same 100,000 

sequences, with 50,000  in-sample and 50,000 out-of-sample data points.  The basic structure 

observed in this case is similar to that seen in the full calculation discussed above.  Some slight 

differences within individual clusters are noted, but the major sequence groupings are intact.  

Interpolation: 10000 in-sample sequences, 90000 out-of-sample sequences 

Figure 6 shows the results of running interpolative MDS and NW on the same 100,000 

sequences, with 10,000  in-sample and 90,000 out-of-sample data points.  Once again, the same 

basic clustering structure is observed, although more significant changes in intra-cluster 

arrangement can be seen.  

Performance results 

Figure 7 shows the wall-clock time required to run each complete pipeline discussed above.  The 

full, non-interpolative calculation required about seven hours, while the interpolative pipeline 

consisting of 50,000 in-sample and 50,000 out-of-sample points required about three-and-a-half 

hours.  Finally, the interpolative calculation with 10,000 in-sample and 90,000 out-of-sample 

sequences completed in a little under an hour. 

Conclusions  
This study demonstrates the effectiveness of combining the Needleman-Wunsch genetic distance 

algorithm with Multidimensional Scaling (MDS) to enable visual identification of sequence 

clusters in a large sample of raw reads from the 16S rRNA genome. In addition, the use of 

interpolative MDS and the Twister Iterative MapReduce runtime provides significant 



improvement in overall computational throughput while maintaining the basic structure of the 

resultant sequence space.  Further investigation is needed to determine the optimal ratio of in-

sample to out-of-sample data set sizes in order to strike the proper balance between performance 

and intra-cluster detail.  Future plans include the study of other genomes and scaling up these 

studies to cluster millions of sequence reads in the span of a single pipeline run.    

List of abbreviations used 

NW – Needleman-Wunsch 

MDS – Multidimensional Scaling 

MSA – Multisequence Alignment 

rRNA – ribosomal ribonucleic acid 
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Figures 

Figure 1  - Basic Computational Pipeline for Sequence Clustering 

Sequence clustering begins with a sampling of raw sequence reads, stripped of duplicates.  

Pairwise sequence alignments and genetic distances are calculated over the entire sample.  For 

this study, the Needleman-Wunsch global alignment algorithm was employed.  Next, the 

calculated distances are passed to multidimensional scaling and pairwise clustering algorithms, 

producing Cartesian coordinates and clustering information which can be used to visualize the 

sequence space.   Both the distance calculation and multidimensional scaling are order O(N
2
), 

where N is the number of sequences, making the pipeline computationally expensive as the 

sample grows very large. 

Figure 2 - Interpolative Multidimensional Scaling (MDS) 



Interpolative MDS begins with a raw sequence file, which is then divided into in-sample and out-

of-sample sets.  The in-sample data is then subjected to full NW distance and MDS calculations, 

resulting in a subset of genetic distances.  This trained data is then used to interpolate the 

distances for the remaining, out-of-sample sequences.  The computational complexity of the 

interpolation step is O((N-M)*M), where N is the size of the original sequence set and M is the 

size of the in-sample data. 

Figure 3  - Scaled-Up Computational Pipeline for Sequence Clustering 

As with the basic pipeline, the scaled-up workflow begins with a raw sequence file.  Before 

calculating genetic distances, the file is divided into in-sample and out-of-sample sets for use in 

Interpolative MDS.   Full MDS and NW distance calculations on the in-sample data yield trained 

distances, which are used to interpolate the remaining distances.  The interpolation step includes 

on-the-fly pairwise NW distance calculation.  The overall complexity of the pipeline is reduced 

from O(N
2
) for the basic pipeline to O(M

2 
+ (N-M)*M) for the pipeline with interpolation, where 

N is the size of the original sequence set and M is the size of the in-sample data.  To enhance 

computational job management and resource availability, all computational portions of the 

depicted pipeline were implemented using the Twister Iterative Map Reduce runtime. 

Figure 4  - 100K Metagenomics Sequences – Full MDS 

Visualization of MDS and clustering results for 100,000 gene sequences from an environmental 

sample of 16S rRNA.  The many different genes are classified by a clustering algorithm and 

visualized by MDS dimension reduction. 

Figure 5  - 100K Metagenomics Sequences – 50K Interpolated Points 

Visualization of the same 100,000 gene sequences clustered by interpolative MDS.  Half of the 

coordinate sets were generated by full MDS calculation, and the other 50,000 were interpolated 



from the in-sample results.   The basic structure observed in the full MDS calculation can also be 

seen here. 

Figure 6  - 100K Metagenomics Sequences – 90K Interpolated Points 

Visualization of the same 100,000 gene sequences clustered by interpolative MDS.  Ten 

thousand of the coordinate sets were generated by full MDS calculation, and the other 90,000 

were interpolated from the in-sample results. The basic structure observed in the full MDS 

calculation can also be seen here, with some degradation of resolution within clusters. 

 

Figure 7  - Multidimensional Scaling Performance 

Performance results for the three runs presented in this paper.   Full MDS for the entire sample of 

100,000 gene sequences required about seven hours to complete on 90 nodes (720 cores) of Polar 

Grid Quarry at Indiana University.   Interpolation with equal in-sample and out-of-sample sizes 

(50,000 sequences each) required about three and half hours to complete.  Interpolation with 

10,000 in-sample sequences and 90,000 out-of-sample sequences required less than an hour to 

complete. 
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