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ABSTRACT 

 

In this report a multi-dimensional data scaling approach is 

proposed in data mining and knowledge discovery applications. 

We derive the method based on an analogy to the physical 

computation of signal distortion. A dynamical cascade 

computation diagrams result from the statistical physics model 

computation in the free energy decomposition. We assess the 

scale invariance of various data sets, such as with the image 

motion sequences, and with the high dimensional chemical data 

sets. Theoretical model of error propagation is given by the 

numerical computational schemes. Statistical mapping of the 

data is analyzed through dynamical cascades, as a way of 

approaching its coding and control data structure. We show how 

it correlates by segmenting set of chemical compounds 

observations  in a high dimensional property space. The 

proposed algorithm, also, is suitable for the implementation in 

parallel computer architectures. An example implementation on 

the multicore processors is given in the end of this report. 

 

 

1. INTRODUCTION 
 

 

A multifractal model formalism is derived in the “Thalweg 

ARC.” project report [12], to explain the decomposition of image 

sequences into  the singular data sets. The partition function 

describes the probabilistic model of data clusters and is analyzed 

as a multifractal measure in the method. Singularity analysis of 

computational maps of clustering vectors is derived to describe 

the computational means of decomposing the image information 

into different singular sets. We show also that the propagation of 

information in image sequences is governed by the scale-space 

wave equation, therefore enabling us to treat singular frequencies 

of data clusters in an unified way, both in space and in time.  

  

Contextual information of the spatial coherency of data is used in 

the segmentation process in the hierarchical scale computation of 

feature vectors. The spatial segmentation of images is performed 

while using the Green's function, parameterized with the scale 

parameter, as the integration function in the segmentation 

process. The scale information is evaluated by conjoining the two 

parameters: the scale parameter β of the signal distortion, and the 

spatial scale parameter r. A larger extent of spatial integration of 

the motion information is used on a larger scale, while it 

becomes effectively more local in space as we decrease the scale 

of segmentation.  

 

Distinct singular features are segmented on a certain scale and 

the least singular feature become segmented in two spatial 

windows with the Laplacian system regularity constraints, in the 

hierarchical scale computation. Accordingly, the reconstruction 

formula is derived based on the Laplacian system of the diffusion 

of the residual information from the most singular sets. This 

gives us an effective way of compressing and progressive coding 

of the information in image sequences. The binary tree data 

structure of the clustering parameters is suitable in the coding 

schemes that use the hierarchical structure of the binary images 

of the spatial distribution of cluster windows, along with the 

feature vectors and residual image information that make up for 

the point feature vector estimation.  

 

We give here a derivation of the computational scheme for a 2-

dimensional case, like in image sequences. We then consider a 

dynamical coupling and the energy exchange between 3 clusters 

computed. Corresponding statistical maps are analyzed w.r.t. the 

dimensionality of the eigenvalue decomposition of the clusters‟ 

covariances.  

 

The results are shown for the chemical compounds in the 155 

properties dimensional data set. Projections along the most 

singular components are computed in 1 and 2 dimensional 

statistical maps.  

 

2. METHOD 

 

Variational data distributions 
 

We define a cluster of data points here with its computed cluster 

vector representative y, and the selected group window of 

computation, W. Let d(x, y) denotes a distortion measure 

introduced to a data point x by the representation y. The 

distortion energy, or variance V of a cluster is defined by: 

   ., W
xPyxdV  

It can be shown [8] that the probability density function that 

maximize/minimize the entropy:  
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respectively, where Z- 

and Z+ are the partition functions, and - and + are the 

corresponding Lagrange‟s multipliers. 

 

Covariance differentiability and a scale-space 

computing approach 
 

The nonlinear dynamics of clustering, in this work is derived 

from the model of “free energy”, originally used in statistical 

physics to model different complex systems. The free energy 

describes the state of a cluster for a given parameter , 
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The parameter  is inversely proportional to temperature 

(=1/T), in physical analogy. The equilibrium states are 

computed to minimize the energy exchange among clusters for a 

given spatial distribution of the clusters.  

 

The distortion measure, applied in the algorithm, is chosen to be 

the linear constraint equation on the motion vector v


, also 

known as the extended optical flow constraint equation:  

 ,)( 22 vIdivvIIzd t
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which provides the mass conservation principle [1]. In this work 

the coherency of data is estimated with its Green's function, to 

control the smoothness of the optical flow adaptively in the scale. 

 

The constrained equation of motion for a coupled pair of clusters 

is given by: 
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where the upper sign corresponds to the cooling part and lower to 

the melting part of the algorithm.  

 

This system of equations can be analyzed by the series expansion 

of the system's free energies: 
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This gives an update formula for the parameter β: 
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for the cooling part of the algorithm, and 
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for the melting part. 

 

Note that this way we keep the integral: 
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The above system of equations results in the determinant of the 

map: 
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For 10    the eigenvalues of the determinant of the map 

have negative values if the Hessians of the free energies, F1 and 

F2, are positive definite, what gives a condition of numerical 

stability of the coupled system‟s equations. 

 

 

Scale-space pathways: resonance computing 
 

Singularity of data clusters is evaluated by the means of  the 

scalability of the maps of feature vector representatives in scale 

space. For a given maximal value of the distortion energy the 

minimal number of singularity manifolds is obtained in the 

hierarchical scale computation.  

 

For a given cluster, the partition function  rZ ,  describes the 

distribution of the data points with respect to the cluster vector 

representative. The scale information is evaluated by conjoining 

the two parameters: the signal energy distortion scale parameter 

β, and the spatial scale parameter r, which equals to the number 

of data points inside the spatial window of computation W. For a 

given point distortion measure of the signal,  yxdz


,2  , the 

partition function is written by: 
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and, a data point belongs to the cluster in probability, with the 

probability density function: 
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The partition function can be conveniently written as: 
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This function is a multifractal measure, giving a way of 

decomposing the signal into feature vector clusters ordered by 

the singularity exponents, H=2βV < 1, and singular frequency 

factors, F/V < 1, as written in: 
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The nonlinear dynamics of clustering is governed by the two 

energy functions. For a given cluster its free energy, and the 

distortion energy is defined by: 
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We relate the mechanism of the multifractal decomposition of the 

signal to the stability analysis of the map.  

 

The stability condition of this map is given by the relation: 2βV < 

1. We limit the singularity exponent of the clusters with the 

maximal value H, by splitting that cluster in two for which the 

condition is reached: 2βcV = H, at the critical value of the scale 

parameter βc. 

 

Interesting points of observation become the “signal energy 

levels”: 

F – V = const., (A.1) 

 

and its propagation in time. The time derivative of this equation 

becomes: 
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The Green‟s formula: 
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as well as, the accompanying wave equation: 
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are used in the computational scheme for the estimation of the 

clustering parameters, and are still part of the ongoing research. 

 

At the “signal scale equilibrium” 0

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F , an isolated cluster 

can be modeled by the equations: 
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The Green‟s function gives a model of spatial coherency of 

information for a data cluster: 
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and is applied locally in the segmentation process. 



 

 

 

 

  (a)     (b)    (c) 

 

Figure 1: Clustering of chemical data: 1225 observations in 155 dimensional property space. Statistical maps projections along the most 

singular components: (a) 1-dimensional, and (b) 2-dimensional. The observations are labeled with „1‟ and „2‟ to indicate a membership 

to the corresponding clusters. The difference in the membership labels in (a) and (b) is shown in figure 1.(c).  

 

 

 

 
  (a)                                            (b)          (c) 

 

Figure 1: Clustering of the expanding ball image sequence. 3 clusters statistical maps projections along the singular components with:   

(a) divergence, (b) rotor, and, (c) divergence and rotor point segmentation. 

 

 

3. RESULTS 
 

A dataset of 1236 compounds with 155 real-valued descriptors is 

used as a test case. The  observations on the solubility of the 

compounds are analyzed in the segmentation algorithm. In the 1-

dimensional case, the 1236 compounds are segmented in two 

groups with: N1 = 226, N2 = 1010 groups‟ members. 

Corresponding clusters‟ variances are: V1 = 25x108, and V2 = 

30x108, respectively. The resulting distribution of the data is 

shown in Figure 1(a).  

In the 2-dimensional case we computed spatial map out of the 2 

most singular components of the data. 1225 compounds were 

segmented in two groups with: N1 = 158, N2 = 1067 members. 

And the resulting variances of the groups decreased as: V1 = 

19x108, and V2 = 28x108, respectively. The resulting clusters‟ 

membership distribution of the data is shown in Figure 1(b). The 

difference in clustering as in (a) and (b) is shown in Figure 1.(c). 

 

A test image sequence of an expanding ball is used as an 

example pattern for 2-dimensional signal decomposition. The 

statistical maps of the clusterized 3 image segments are shown in 

Figure 2. Differential operators: divergence, rotor, and a 

combination of the two are used for clustering data. The resulting 

membership distributions of data points are shown on Figures 

2.(a-c) for these operators, respectively.  

 

4. CONCLUDING REMARKS 
 

We have described a new method for multi-dimensional data 

scaling, in data mining and knowledge discovery applications. 

The hierarchical scale decomposition into different singular sets 

is obtained by evaluating scale-space scalability of singular 

features for the clusters of data points. The information content is 

evaluated by the scale-space frequencies of corresponding  data. 



The Green's function expresses spatial coherency of data clusters 

and is used as an integration function for the segmenting data by 

applying local operators. In the method proposed, a 

decomposition in harmonic data sets is achieved by hierarchical 

scale computation. We use dynamical cascade diagrams to form a 

knowledge base discovered in the data, by this method. 

 

We have run the algorithm only by applying the solubility as an 

additional property value in the data set. The improvements can 

be achieved by running the differential version segmentation on 

the solubility property. The associated structure diagrams can be 

used to relate different subsets of property values, and therefore 

making a knowledge base suitable for coding and control 

purposes.   

 

We intend to investigate this tool in data mining applications – 

its coding and control structure implementation. The 

optimization of the space-energy exchange step along with the 

refinement of our numerical schemes is a part of our ongoing 

research work, as well. 
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5. APENDIX 
 

 

Main: decomposition – basic algorithm: Kmax = 3 

 

1. Divide data evenly: N/Np  to each core, i(p) and c = 1, indexed 

Start with: Couple = 0. 

 

2. For K   Kmax                  // Recursive procedure 

  

3. Do gradual descent until resonate 

 

Covar_project (); //Compute parameters: 3D + 2*dcov singular 

components 

 

Cls_map (+, -, Space); // Adjust with Green‟s functions 

 

 For all the clusters: 

Cls_equilib (Sign =  1,Couple); // Equilibrate clusters 

 

For all the clusters: 

Cls_covar (Sign =  1);          // Covariance computing 

 

Cls_svmdcmp (Sign =  1);    // Singular values 

decomp. 

 

4. Test stability 

 

 IF the most spatially coherent cluster unstable 

  Split in 2 clusters, K++ 

 ELSE IF a cluster empty 

  Merge in 1, K-- 

 ELSE Resonance 

 

 

 

Cls_equilib (Sign, Coupling) 

 

Do gradual descent until converge for all the clusters with 

partial sums: 
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 2. Sequential_update_1 ( ) 

 

 

 
),

1
(** couple

p

c

p

c

cc y
T

CouplingSign
pZ

pg

Signyy










 

 

 

Cls_covar (Sign); 

 

1. Parallel_Sum_2 (p, cy


, CC
c) 

 For all the clusters c, and data dimension dcov: 
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2. Sequential_update_2 ( ) 
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