
 1

The Open Grid Computing Environments Collaboration: Portlets and
Services for Science Gateways

Jay Alameda1, Marcus Christie2, Geoffrey Fox2,3, Joe Futrelle1, Dennis Gannon2, Mihael Hategan4,
Gregor von Laszewsk5, Mehmet A. Nacar3, Marlon Pierce3 *, Eric Roberts6, Charles Severance7, and Mary

Thomas8

* Submitting author
1National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

2 Department of Computer Science, Indiana University
3 Community Grids Laboratory, Indiana University

4Computation Institute, University of Chicago
5Mathematics and Computer Science Division, Argonne National Laboratory

6Texas Advanced Computing Center, University of Texas
7School of Information, University of Michigan

8Department of Computer Science, San Diego State University

Abstract: We review the efforts of the Open Grid Computing Environments collaboration. By adopting a general
three-tiered architecture based on common standards for portlets and Grid Web Services, we can deliver numerous
capabilities to science gateways from our diverse constituent efforts. In this paper, we discuss our support for
standards-based Grid portlets using the Velocity development environment. Our Grid portlets are based on
abstraction layers provided by the Java CoG kit, which hide the differences of different Grid toolkits. Sophisticated
services are decoupled from the portal container using Web service strategies. We describe advance information,
semantic data, collaboration, and science application services developed by our consortium.

1. Introduction
Browser-based science portals date from the beginning of Grid research [Foster2004, Berman2003] and
have served as a focal point for investigating the problems of integrating Grids with Internet protocols,
with heterogeneous security mechanisms, and with Web programming languages (Java, Perl, Python).
The state of portal development through 2001 is surveyed in a special issue of Concurrency and
Computation: Practice and Experience [Hey2002]. Fox, Gannon, and Thomas [Fox2003] provide an
analysis and categorization of these first-generation portal efforts.

The portal research summarized in [Hey2002] grew out of the Global Grid Forum’s Grid Computing
Environments (GCE) Research Group. The GCE generally revealed three things. First, all portal projects
worked on the same general problems: file transfer and management, job submission and monitoring, data
management, and user management. Second, most portal projects had adopted a variant of the “three-
tiered architecture” model. Finally, and unfortunately, an important gap existed between projects: no
common portal programming interfaces or generally accepted inter-tier communication protocols were in
use. This dramatically limited the amount of code sharing and collaboration.

This situation began to change rapidly in early 2002 with the emergence of two important concepts:
reusable portal components (portlets) and Web Service architectures. Java portlet components became
standardized with the Java Specification Request JSR 168 [Abdelnur2003]. Web Services architectures
are summarized in [Booth2004]. Modern portal systems have adopted these two cornerstones and follow
a general architecture shown in Figure 1. Standard-based portlets provide reusable functional components
that can be shared between different portal installations. Web Services decouple the portal functionality
from its presentation layer. As shown in the figure, general purpose Web Service communications (i.e.
SOAP) connect portlet applications with remote services. These remote services provide generic views to
specialized backend resources. A common example is the GRAM job manager, which can bridge to PBS
and LSF queuing systems as well as the local operating system. OGSA-DAI, which provides a Web

 2

Service layer of abstraction over relational and XML databases, provides an analogous example for data
management. This diagram follows the general “three-tiered architecture” model of enterprise portal
systems [Singh2002]. The architecture diagram is greatly simplified, as both the client abstraction layer
and service implementations can be very complicated (e.g. Figure 2). However, the sophistication of
these implementations is hidden from the other system components.

The power of the general architecture shown in Figure 1 is that it supports not just distributed computing
but also distributed development. Different development groups can provide portlet plug-ins and service
components that need only expose programming interfaces. The Open Grid Computing Environment
(OGCE) [OGCE] collaboration is built upon this model. The general problems to be solved include

• Supporting container-independent portlet development;
• Simplifying the development of Grid clients through abstraction layers;
• Developing sophisticated supplemental Grid services that manage science applications, Grid

information, and data; and
• Integrating collaboration tools and services to support user communities.

These efforts are fully described in other references given in the appropriate sections. Our purpose here is
to provide a summary and place the efforts within the context of Figure 1.

Po
rt

al
 C

on
ta

in
er

Po
rt

le
t C

om
po

ne
nt

s

Internal Portal
Services

C
lie

nt
s:

 W
eb

 S
er

vi
ce

s
C

lie
nt

s,
 C

O
G

A

bs
tr

ac
tio

ns

Grid Toolkit
Services

GPIR, Tupelo,
Application

Factory
Services

Data
Sources

User Interface Tier Service Tier Resource Tier

Collaboration
and

Information
Services

Computing
Resources

Collaboration
Sources

Web Service
Protocols

Local Access,
Specialized Protocols

Figure 1 Portlet and services are organized into three logical tiers. The figure is described in more detail in
the text.

This paper is organized as follows. We first review our efforts in Figure 1’s User Interface tier. We
discuss OGCE’s support for Grid portlet development through Velocity. Grid programming interfaces for
portals and services using the Java CoG kit are discussed in the following section. Packaging portals is
described in the section on GridPort. We then turn our focus to the middle tier Grid portal services.
These include Grid Portal Information Repository services, Sakai collaboration services, Tupelo data
management services, and science application service support.

The use of available standards, such as portlets and Web Services, enables a great deal of interoperability
and provides us with a foundation. Implementing sophisticated portlet clients and services (such as GPIR
and Tupelo portlets and services and Sakai portlets) is one of our major activities. However, we must go

 3

beyond this foundation to provide a common infrastructure. We highlight here two of these. First, the
OGCE, through Java CoG Kit development, has developed a common abstraction layer for developing
Grid portlets. This is described in more detail in Section 3, but these developments permeate several
projects, including Velocity portlet support (Section 2), various OGCE compatible portlet (Section 4), and
various services (such as Tupelo, Section 7). Second, the JSR 168 specification does not support inter-
portlet communication and data sharing. This is crucial for Grid portlets, since Grid credentials (obtained
from a MyProxy server) must be shared with other portlets (GridFTP and Job Submission, for example).
The OGCE has developed inter-portlet data sharing services and a simple API used when developing
portlets. This is based on a shared singleton design pattern that uses the common classpath space
(/shared/lib in Apache Tomcat) of the Web Server, and is used to support inter-portlet sharing of
credentials. However, the method is general and can be used to share any Java object.

We would finally like to emphasize the packaging and distribution of portlets. JSR 168 provides
interoperability of portlets in multiple containers, but the OGCE has emphasized this. The core portlet
downloads are built and white-box unit tested (using HttpUnit) with an Apache Maven-based build
process. This process supports both uPortal and GridSphere deployments, and may be extended to support
other JSR 168 compatible containers.

2. Building Grid Portlets with Velocity
The portlet API [Abdelnur2003] is a very important standard for portal component reusability, but it
leaves much to be desired as a development environment: it provides a very basic “model-view-
controller” programming interface for building portlet applications. This superficially seems to compete
with more mature and powerful web application development tools such as Velocity, Struts, and Java
Server Faces. Furthermore, one may be concerned that previous development work using these more
powerful tools is incompatible with the portlet standard. Fortunately, this is not the case, and one may
build bridges between these different tools. As described in this section, the OGCE has developed support
for portlet standard-compliant Velocity.

Velocity portlets use the Apache Jakarta Velocity [Velocity] template engine to render returned markup
fragments. Velocity template files contain HTML markup interspersed with expressions that allow access
to Java objects and methods. The Velocity portlet code creates a Velocity “context”, a simple mapping of
strings to Java objects, and passes this context, along with the template to be rendered, to the Velocity
template engine. If one of the specially escaped strings in the template (e.g., “${gridJob}”) matches one
of the strings in the context mapping (e.g., “gridJob”), then that template variable is associated with the
mapped Java object.

There are several reasons behind OGCE’s interest in Velocity. The Velocity Template Language has the
virtue of being powerful, simple and unobtrusive; the Grid portal developer has powerful programming
constructs to create a dynamic portlet view, but is not encumbered by complicated, special markup.
Another benefit is that Velocity enforces a clean separation of code from presentation, and thus facilitates
Model-View-Controller style development. It does this by only allowing the template writer access to
Java “Context” objects and their methods; the template writer may use simple programming language
constructions (such as control loops and conditionals) in the template, but does not need to know any Java
programming. This has the added benefit of removing the temptation to put too much Java code in the
HTML presentation layer. In addition to these benefits, interest in Velocity portlet development also has
historical roots. OGCE is based on earlier work in portal frameworks such as Jetspeed and CHEF, and
the de facto portlet development model in those legacy frameworks included using Velocity templates.
Hence, several OGCE portlets and portlets developed by users of OGCE were and are developed using
Velocity templates. It is thus advantageous to be able to port Velocity portlets from the legacy
frameworks to the new standards based frameworks.

 4

For these reasons, OGCE has developed a JSR-168 compliant generic Velocity Portlet utility from which
1) Velocity portlets created in legacy portal frameworks could be ported to new, standard compliant
containers, and 2) new, standards-based Velocity portlets could be developed by users of OGCE. The
OGCE generic Velocity Portlet takes care of the task of loading and rendering Velocity templates, so that
portlet developers simply need call a setTemplate() method with the name of the template to use. The
generic Velocity Portlet also provides a facility by which links and buttons in a portlet’s Velocity
template can invoke action methods in the portlet code. This is accomplished by having a request
parameter with a special prefix and the action method name as the suffix; the Velocity Portlet code looks
for a request parameter with the prefix and then uses Java reflection to invoke the specified action
method. Finally, this utility provides the template writer with several convenience context variables.
Some examples are references to the portlet request, response and preferences objects, and special URLs
that the portal understands as referencing the portlet from which they come and that can be used to invoke
one of the portlet’s action methods or switch to the Help or Edit views.

Figure 2. The Velocity template snippet illustrates basic Grid portlet development concepts. The template is
described in more detail in the text.

A snippet of a Velocity template is provided in Figure 2 for illustration. In line 1, ${proxy} is a
context variable reference to some grid proxy credential object, and in lines 1, 3, and 10, there is a
familiar if/else/end construction. Here the test is on whether the grid proxy credential object is available.
Line 2 demonstrates how to invoke an object’s method within Velocity. In line 4, the ${actionURL}
is one of the convenience context variables provided by the generic Velocity Portlet class; using this URL
this form will be submitted to the portlet from which it came. In line 7, “actionMethod_” is the special
action method prefix used here in the actionMethod_getProxy submit button, signifying that
“getProxy” is the method that should be invoked to handle this form submission. OGCE’s Velocity
support is documented at the OGCE website and within the OGCE release.

OGCE Velocity portlet support can be used to build general purpose Velocity portlet applications. Our
Grid portlet development integrates Velocity action methods with the Java CoG kit, described in the next
section. As part of our core Grid portlet release, we provide Velocity-based, JSR 168 compliant portlets
for user Grid credential management, job submission and monitoring, GridFTP-based remote file
management, and system information view (the Grid Portal Information Repository, described below).
We verify portals for deployment in uPortal [uPortal] and GridSphere [GridSphere] portal containers.
Our portlets depend on no container-specific services and can work with multiple grid installation
versions simultaneously, as described below. Inter-portlet data sharing services, based on the singleton
design pattern, can be used to share Grid credentials between portlet applications.

 5

3. Grid Abstraction Layer: The Java CoG Kit
Grid and Web Service architectures provide a common framework for building science gateways, but we
must often go beyond these for several reasons: deployed Grid service middleware includes pre- and non-
Web Service legacy systems, Web Service implementations from different toolkit versions, and services
with overlapping functionality but incompatible service definitions. Thus there is a need for an
abstraction layer that can hide these differences.

The Java CoG Kit [Las2001a][Las2003] has for years provided support for the development of Grid
portals based on Java technology based on user requirements [Las2001b]. Much of the recent Java CoG
effort with the OGCE has been devoted to providing a higher level abstraction for Grid toolkits: basic
capabilities use object-oriented design principles to “abstract” the Grid middleware, allowing the
integration of the significantly different Grid middleware toolkits available today. Such an abstraction
protects the investment of the portal and application developers, who may build upon basic tasks such as
single sign on, credential management, file transfer [Las2004], file access, and job execution [Las2003].
In addition, the Java CoG Kit also includes a sophisticated but easy to use workflow management
framework [Las2005]. The Java CoG Kit provides such an abstraction as part of a Java API and an XML-
based workflow framework.

The Java CoG Kit has evolved from a project that exposes much of the Globus Toolkit functionality
through Java to a framework that contains a significant feature enhancement to the Globus Toolkit
architecture. Based on its features, it is used by, and distributed with the Globus Toolkit version 3 and
version 4, and OGCE version 1 and version 2. To these technologies belong for example the GSI based
Java security libraries, the GridFTP client libraries, most of the client libraries to the classic (pre-Web
Service) Globus Toolkit, and the myProxy credential client libraries. The Java CoG integrates a variety of
commodity tools, protocols, approaches, and methodologies, while simplifying the access to Grid
middleware.

3.1. Advanced Features
In order to support our vision of simplifying Grid portal development, we have identified a number of
higher level abstractions including Grid tasks, transfers, jobs, queues, hierarchical graphs, schedulers,
workflows, and control flows. However, in contrast to other Grid efforts we have provided a mechanism
in our framework that allows the integration of a variety of Grid and commodity middleware in an easy-
to-comprehend framework based on the concepts of protocol independent abstractions, providers, and
bindings, which are discussed below.
• Providers. We have introduced the concept of Grid providers to allow the binding of different Grid

middleware services at runtime. The programmer thus does not need to worry about the particularities
of the Grid middleware and version differences, and so can instead focus on the actual functionality.
Through dynamic class loading, we have the ability to carry out late binding against an existing
production Grid. This allows, for example, a single portlet client to work with multiple Grid versions,
chosen (directly or indirectly) by users through browser requests.

• Abstractions. We have identified a number of useful abstractions that help in the development of
elementary Grid applications. These abstractions include job executions, file transfers, workflow
abstractions, and job queues. These can be used by higher level abstractions for rapid prototyping. As
the Java CoG Kit is extensible, users can include their own abstractions and enhance the functionality
of the Java CoG Kit.

• Bindings. Through these concepts, the Java CoG Kit protects development investments by protecting
them from changes to the Grid middleware.

Based on these elementary concepts, we designed a layered architecture that allows the gradual
enhancement of capabilities within a portal design needs.

 6

3.2. Advanced Adaptability
The architecture of the Java CoG kit is discussed in more detail in [Las2003] and [Las2005]. The layered
approach of the Java CoG kit provides adaptability towards different Grid middleware versions as
depicted in Figure 3.

GT2GT2GT2

CoG Kit Abstraction LayerCoG Kit Abstraction LayerCoG Kit Abstraction Layer

CoGCoGCoG

GT3.02GT3.02GT3.02

CoGCoGCoG

GT4
WS-RFGT4GT4

WSWS--RFRF

CoGCoGCoG

CoG Kit-based
Applications and Portals

CoG KitCoG Kit--basedbased
Applications and PortalsApplications and Portals

CoG Kit Data and Task
Management Layer

CoG KitCoG Kit Data and Task Data and Task
Management LManagement Layerayer

CoG Kit Gridfaces Layer CoG KitCoG Kit Gridfaces Gridfaces Layer Layer

SSHSSHSSH

CoGCoGCoG

Nano
materialsNanoNano

materialsmaterials
Bio-

InformaticsBioBio--
InformaticsInformatics

Disaster
ManagementDisasterDisaster

ManagementManagement
PortalsPortalsPortals

GT3.02GT3.02GT3.02

CoGCoGCoG

GT3.02GT3.02GT3.02

CoGCoGCoG

CoGCoGCoG

locallocallocal

CoGCoGCoG

WebDAVWebDAVWebDAV

CoGCoGCoG
CoG Kit
Providers

CoG Kit
Abstractions

WorkflowWorkflow
AbstractionsAbstractions

Workflow Workflow
Engine/ Engine/
KarajanKarajan

WorkflowWorkflow
PortletPortlet

Queue/SetQueue/Set
AbstractionsAbstractions

CoG Kit
Advanced
Abstractions

CoG Kit
Visuals

CoG Kit
Applications

Grid Middleware &
Commodity
Technologies

Figure 3 The layered approach of the Java CoG Kit provides mechanisms for abstracting Grid middleware,
providing a common programming interface for building portlets to interact with Grid job submission and
remote file management services, and it may be extended to support additional services, such as information
management. The implementation of the abstraction layer uses dynamic class loading that allows OGCE
portlets to interact with different Grid toolkits: the toolkit version of the underlying Grid service is a
parameter set by the portlet at runtime, allowing the same running portlet to interact with (for instance) both
pre-Web Service and Web Service versions of the Globus Toolkit.

Many of the features of the Java CoG Kit are now integrated as part of OGCE as JSR168 portlets. They
are also available as part of a prototype science desktop that can be accessed through Java Web Start. In
the future we will expose our workflow services in a more integrated fashion and enable users to manage
their Job queues and Workflows.

4. Packaging Portals: The GridPort Toolkit
The latest GridPort release reflects significant changes in the design philosophy typically adopted by grid
portal toolkit developers [GridPort]. Typically, a comprehensive and encompassing API is required to
interface to a growing number of grid services. However, these operate only within the portal framework
(e.g. GPDK, GridPort versions GP2 and GP3.0 [Thomas2002], GridSphere, CHEF). As the Grid becomes
more commonly used and adopted within the commercial arena, this approach is not sustainable. There is
a need to move away from programming to an inflexible API towards interoperable but independent,
pluggable component portlets and services. The interoperability must occur at the service level (which is
what SOA delivers). The GridPort 3.5 series reflects two primary approaches: at the architectural level,
we see that in order for portal development to scale with current technology trends, the use of services
oriented architectures (SOA), Web services, and a portal component approach (WSRP, JSR-168) are

 7

required [Thomas2005]. Additionally, there is a need to provide simple, robust and easily installed
demonstration portals for novice users.

With these goals in mind, the portlet/user interface tier has been separated from external services,
including local portal services (the GP3.5 architecture is shown in Figure 4). This diagram reflects the
layered approach of OGCE, as shown in Figure 1. Where possible, the portlet implementation uses
existing API’s (e.g. Java CoG, the Storage Resource Broker [Rajasekar2002], etc.). All portlets depend on
the OGCE portlet credential exchange mechanism. In addition, GridPort contains a suite of local or
internal services (see also Figure 1) that provide support for the portals including persistence of state,
session/user task history, and storage of local proxies. GridPort installs easily via automated installation
with Maven (no need to download related libraries, this is done automatically). It also contains a new set
of demonstration portlets as well as standalone versions of the GridPort 3.x web services. The result is an
easily installed basic portal that can have users up and running with minimal supporting software
installation and grid configuration procedures. Additionally, the portlets and services can be deployed
independently and used by other portals or grid systems.

Figure 4 The GridPort architecture follows the general architecture of Figure 1. Grid Portlets using the Java
COG Kit interact with remote Grid Services. Additional OGCE-compatible portlets interact with
supplemental Grid services such as GPIR (described in Section 5), Comprehensive File Transfer, and Job
Task Sequencing.

The latest release of the GridPort toolkit is GP3.5.1 and is part of an incremental release in the GridPort
3.5 series [Thomas2005]. The portal features OGCE portlets, as well as several container services that are
being integrated into the OGCE core. The demo portal is composed of portlet components with the same
(or advanced) capabilities of previous GridPort portals providing basic Grid access and capabilities
including the GPIR Browser for grid information, GRAM Job Submission, GridFTP file management,
and proxy manager portlets as well as MyProxy and GridPort Repository single sign-on grid
authentication modules. The GridPort demo portal installation takes care of installing the GridSphere
portal framework, the GridPort portlets, grid authentication modules and a custom look and feel into a
Tomcat web server.

 8

GridPort 3.0 included web services that, upon installation, were installed into a single JBoss container
which made it difficult for users to only install the services that they wanted. In GridPort 3.5, the GPIR
and Comprehensive File Transfer web services have been extracted from GridPort 3 and can now be
installed separately. JBoss dependencies have also been removed so that all service components install
easily into Tomcat. These services now each include a ready-to-deploy lightweight Hypersonic SQL
database that makes installing and using them easier than ever before.

5. Information Services: Grid Portal Information Repository (GPIR)
While there are numerous sources of information in a Grid environment, we have found that it is
necessary to provide a convenient location to store portal related data. The aim is not to replace other
information providers such as Globus MDS2 [Zhang2004] but rather to aggregate and cache Grid and
portal related data in support of rapid and easy portal development. Specifically, the Grid Portal
Information Repository (GPIR) provides GridPort with its data persistence needs. Perhaps most
fundamentally, GPIR provides a place to store data about your Grid that is readily accessible to a portal
application. This includes both dynamic data and "human-centric" data (such as where a resource is
located or whom to call for support): a) "dynamic" machine-oriented data is updated via a Web Service
called the "GPIRIngester" using information providers and data reads are performed via the "GPIRQuery"
Web Service; and b) "human-centric" data is managed through the GPIR Administration client which is a
standard web application accessed via a browser.

Figure 5 GPIR Service architecture provides Web Services to ingest (insert into databases) and query
information resources. Web Service clients implemented in portlets provide multiple user views to ingested
data.

Data sources can be divided into four types: machine gathered or automatic, which can further be divided
into standards-based and custom providers; and human entered information which can be split into "facts"
or observations on the one hand and "decisions" on the other. Standards based data sources would include
things such as the Globus MDS or Ganglia [Massie2004]. By contrast, custom providers might be written

 9

to query the resource manager on each resource and report back to GPIR. Factual data might include
aspects of the system that exist in the social realm such as the Virtual Organization membership of a
system, a textual description of the configuration and general purpose of a system, or the departmental
and institutional affiliation of the resource, while "decisions" are aspects of a system that are dependent
upon human intervention or decisions such as a system's next scheduled downtime.

We must provide also a rich user interface to make use of GPIR services. GPIR portlets are a core part of
the OGCE release and are developed using Velocity tools described in Section 2. The out-of-the-box
OGCE portlets include GPIR portlets that point to default services but which can be easily configured to
point to local GPIR installations.

6. Collaboration Services Using Sakai
Much of e-Science activities consist of some combination of collaboration between people, access to
common resources, and dealing with scientific data across the scientific endeavor. The Sakai project
provides an “out-of-the-box” portal download, but more recent releases have also featured two important
developments in accordance with the principals of Figure 1: Sakai collaboration tools are available as
Web Services and the OGCE has developed JSR 168-compatible portlet interfaces to these services.
Sakai tools have a much richer concept of authorization than is supported in JSR 168-compatible
containers, so developing a full integration is an interesting on-going effort.

Sakai's organizing principle is a "Site" - users can be members of many sites. Each site has its own set
of tools and resources. Sites can be created for many purposes: an "All Hands" site for all members of the
collaboration, a site for a particular committee, a site for a particular experiment. Each site has its own
"contextualized" set of tools and resources that can be used by the members of the site. Tools that can be
included in a site include: threaded discussion, e-mail archive, schedule, announcements, chat and others.
In addition to tools, each site has its own content repository capable of storing files and folders accessible
to the members of the site. Each site owner(s) maintain the access control and roles for the site. A unique
aspect of Sakai is the ability to quickly create a new site and let users join the site, enabling a very organic
approach to collaboration.

While there are many ways to support chat, threaded discussions, or mailing lists, Sakai is unique in the
notion of contextualizing the activity around a site. This context can be used to organize data outside of
Sakai as well. But using a consistent set of contextualized tools for collaboration it is possible to capture
virtually all of the collaborative activity as data. By closely associating the data from the collaborative
activity with the corresponding data from science activity, it is possible to significantly enhance the value
of scientific data.

In OGCE’s Release 1, we provided a single solution that attempted to solve all of the problems of e-
Science infrastructure with a single software product. While many adopters found OGCE 1 to be a rich
environment "out-of-the-box" because it was a self contained solution, it was difficult to expand OGCE 1.
In OGCE 2 we are developing a more decoupled, component-based approach providing each of the major
components of e-Science (collaboration, portal, and data) using separate technologies that are highly
capable and extendible and focusing on the integration of those technologies. Much of the effort in
OGCE with respect to Sakai is in the area of smooth integration with the other elements of the OGCE
product. This effort falls into two principal categories: adding Web Services to Sakai, and building a
Sakai JSR-168 Portlet

The 2.1 release of Sakai includes full integration of Apache Axis 1.2. This potentially allows any of the
Sakai APIs to be accessed remotely over web services. Since the Sakai APIs provide access to all of the
functionality of Sakai, it is possible to do any operation in the Sakai GUI over web services. The

 10

currently supported services include synchronization of account and group information, automatic
creation and maintenance of Sakai sites, and building of different presentation mechanisms (Visual Basic,
PHP, and JSR-168) for Sakai sites and materials. When combined with JSR 168 clients for managing the
Web service clients, we can integrate Sakai tools into standard-compliant portals, such as shown in the
OGCE-based LEAD portal screen shot, Figure 6. Current community work is underway to build Web
Service interfaces to all Sakai services, which will allow us to build non-user interface clients to Sakai
services. We thus see a very promising integration of science application and collaboration tools in the
near future. For example, one may potentially integrate science application management tools with
calendar tools to track and manage work.

Since the OGCE project is focused on portals and the JSR-168 standard, it was very important to develop
a JSR-168 portlet that allowed Sakai elements to be placed in the JSR-168 portals supported by the
OGCE project (uPortal and GridSphere).

Figure 6 Sakai tools can be made available to portals using JSR 168 portlets and Web Services. The figure
shows the Sakai Launcher Portlet (and the associated Sakai web content) in the OGCE-compatible LEAD
project’s portal. This version uses a JSR 168-compatible uPortal container.

The recently developed Sakai Web Service Portlet (shown in Figure 6) uses Sakai's Web Services to
automatically log the portal user into Sakai and create and provision their Sakai account as necessary.
Once the user is logged in the list of Sakai sites which the user can access is retrieved using standard Web
Service request/responses. These sites are then presented to the user so that the user can choose between
their Sakai sites. Upcoming versions of this portlet will allow the placement of a single site or a single
tool within the JSR-168 portal. The goal is to make the Sakai capabilities as flexible as any other portlet
within the portal. Sakai effectively appears as a set of virtual JSR-168 portlets in the portal.

The long-term plan for Sakai is to fully integrate the tools into the portal as portlets. However with the
current capabilities of JSR-168, the full integration of Sakai into the portal cannot be done with out portal-
specific modifications. The Sakai JSR-168 portlet allows a level of integration between Sakai and JSR-
168 portals without compromising portability between JSR-168 compliant portals.

 11

7. Content Management: The Tupelo Semantic Content Repository
Tupelo [Futrelle2005] is a Grid-based semantic content repository designed to support collaborative data
sharing within and between geographically distributed communities. Tupelo supports content versioning,
transactional atomicity, and change tracking for all content. In addition, it provides standards-based
means of defining arbitrary, user-specified content and metadata schemas. Finally, its API is accessible
using Grid services, providing public-key authentication and fine-grained access control. Tupelo
represents a working example of the kind of repository being envisioned as part of a next-generation
semantic grid [DeRoure2005]. Tupelo is an outgrowth of the NEESGrid [NEES] data repository and so
has proven applicability in scientific data management. However, the architecture is general and may be
applied to general content and data management problems.

7.1. Tupelo design principles
Like content management systems (CMS’s) and CMS API’s such as Plone [Plone] and JSR-170
[Nuescheler2005], Tupelo provides applications with a storage-neutral means of managing content and
associated metadata. Unlike most CMS API’s, Tupelo also allows applications to create and manage
metadata schemas, using the Web Ontology Language (OWL) [McGuiness2004]. Tupelo metadata is
“self describing” in the sense that content items are explicitly linked to classes describing them, and can
be validated against those classes using Tupelo and OWL API’s. Strong typing of attributes and complex
constraints such as controlled vocabularies, class membership and numerical ranges can be represented,
imported, exported, and enforced using generic mechanisms without having to separately maintain
application-specific code for carrying out these general tasks.

Tupelo was designed for archiving evolving community data resources, and can accommodate multiple,
dynamic, potentially overlapping schemas using namespace-scoped identifiers and schema evolution via
version control and change tracking. In addition, its OWL support means that independently developed
schemas can be merged and checked for logical consistency using standard OWL reasoning API’s.

Tupelo was designed to support distributed project groups and supports fine-grained access control on all
content objects. The Tupelo API is exposed as a web service using the Open Grid Services Infrastructure
(OGSI), and links Grid Security Infrastructure (GSI) authentication to Tupelo’s access control system.
We plan to adopt the Web Services Resource Framework (WSRF) for future releases of Tupelo. The web
service API allows lightweight clients to securely perform meaningful operations on large quantities of
metadata without residing in the same runtime environment. This is a deliberate analogy to Grid
computing, in which access to computational resources is exposed as a service [Berman2003].

7.2. Implementation
Because Tupelo is an archiving system, it is designed to scale to large numbers of objects and files.
Although OWL was chosen as the standard means of importing and exporting schema and instance
information, most OWL implementations are designed for declarative, sequential-access, batch
processing modes. In Tupelo, classes and objects are compiled to database records to take advantage of
database indexing. No sequential-access formats are used in Tupelo’s storage implementation, but
metadata can be imported/exported in OWL XML format for interoperability with existing OWL tools.

Tupelo’s access control implementation is based on global, rather than local identities, which allows it to
interoperate with certificate-based authentication systems without requiring difficult-to-maintain identity
mappings or access to directory services. For instance, GSI-authenticated users can be organized into
access control groups and granted permissions based on their X509 Distinguished Name. Authorization
decisions are implemented as SQL joins to achieve scalable performance over large numbers of objects,
allowing for fine-grained access control.

 12

Tupelo’s API’s represent a rough superset of the capabilities of a variety of related technologies,
including not just CMS API’s but protocols such as WebDAV. A number of these API’s and protocols
are candidates for Tupelo to support.

7.3. Tupelo and portals
The utility of Tupelo in a portal environment is that it can insulate independently developed portal
components from needing a priori information about content items in order to perform meaningful
operations on them. For instance, a data processing application can use Tupelo to validate objects
generated by a data producing application against the objects’ declared classes, eliminating the need to
duplicate validation semantics in every consuming application. Tupelo can also be used to efficiently
implement any of a number of strategies for grouping content items, rather than the strictly hierarchical
grouping enforced by many CMS API’s, in which each the relationship between levels of hierarchy and
meaning is unspecified. Tupelo can also enable relatively generic portal applications to be built that can
consume content schemas from Tupelo and configure themselves dynamically to provide users with the
ability to browse, edit, manage, and query arbitrary types of content. Tupelo’s ability to accommodate
multiple, evolving schemas provides a data integration framework for developing portal components that
manage complex workflows, distributed collaboration, and organizational memory [Myers2003].

Tupelo can also serve as a data management provider for workflow systems. It is suitable for capturing
metadata and intermediate results as a workflow executes, including linking derived data to source data
and processing attributes. We plan to integrate Tupelo with COG4's workflow engine both as a file
transfer provider and as a means of producing and extracting metadata to drive dependencies and
conditions in the workflow graph. This will enable Tupelo to interoperate with a variety of other
providers in the COG4 framework without requiring workflow authors to use Tupelo-specific API's.

8. Scientific Applications as Portal Services
In the previous section we reviewed the use of Tupelo services for data management. This has been
applied to problems in scientific data management, although the approach is general. In this section we
review scientific applications that produce and consume this data.

Most portals devoted to a scientific application domain provide a way for the portal user to supply
parameters to pre-configured applications and then execute them. For example, a life-science portal
would provide a way for a user to supply input data to an analysis program such as BLAST. The portal
would take this data and execute BLAST on a Grid computing resource and return the result back to the
user. There are several ways to do this. The obvious first idea is to create a portlet specifically for the
application. It can be customized to present the user with clear instructions on what data is required as
input to the application together with the forms for uploading the data or supplying needed parameters
and a button “execute” which, when pressed, will cause the portal to submit the job to some remote
system and wait for the result to return. This approach will work but it has several limitations.

• It is labor intensive – a programmer must build a portlet for each application and most scientists
who have applications they want integrated into the portal are not portlet programmers.

• For many applications, it is not practical to make a user wait for a portlet response to finish the
job execution. The application execution may take several hours. Consequently, some sort of
session state must be maintained in the portal to capture the results of an execution even when the
user has logged out.

• In many cases the user may want to incorporate the application into a larger workflow. In this
case it is more useful to have the application available as a service that can be invoked from a tool
like Taverna [Oinn2005], Kepler [Ludascher2005], the Java CoG (described above), or BPEL
based tools [Slominski2005].

 13

A better approach is to separate the application execution management into a web service that may be
invoked from the portal or from a workflow. This idea of “wrapping” an application as a web service is
not new [Gannon2002]. More recently, Soaplab [Senger2005] has been developed by the European
Bioinformatics Institute to accomplish similar tasks. Our most recent version of the web service
application wrapper, SecureGFac [Kandaswamy2005] is now being used in the LEAD gateway project,
and both portlets and services are available through the OGCE.

SecureGFac has two components: a “Generic Service Factory” that runs in the portal and the application
service instances that run anywhere on the Grid. To create a wrapped application, the scientist must
follow these steps. First, deploy the application on a grid host. If an automatic deployment service is
available, this can be used instead, but this not in SecureGFac’s scope. Second, describe the application.
This process involves filling in an “application service map document” (implemented as a portlet) that
requests information including: the location of the deployment, the command line needed to execute the
application, the names of input files needed by the application, special parameters needed by the
application that must be supplied by the user, the names of output files, a list of users or groups that are
allowed to use the application, and the location of a registry service that will hold the WSDL for the
application service. Third and last, upload the service map document to the Generic Service Factory
Portlet in the Portal.

At this point the Generic Service Factory takes over. It launches a generic application web service on the
remote host where the application is installed and passes the service description document to that service.
The generic service reads the application service map document and dynamically configures itself into a
web service ready to run the application. It generates two additional documents. One is the Web Service
Description Language (WSDL, see [Booth2004]) that describes this specific application service, and the
other is a user interface document. The service registers the WSDL with the registry service so that it
may be discovered by clients. The service also notifies a “capability manager” with the list of authorized
users.

The application may now be invoked as part of a workflow or it may be directly invoked by a user from
the portal. In the later case, when a user logs into the portal, it can search a list of applications to find the
right one. Selecting the application causes two events to happen. First the user’s identity is used to check
the capability manager for a capability token for that service. Next, if the user has been authorized to use
the service, the portal loads the graphical user interface into the portal. The portlet that displays this user
interface takes the users response and translates this into a secure web service request to the application
service.

When the application service gets the request, it starts a thread that runs the client application. In most
cases, the application request involves moving data to the host where the application runs. As the data
movement and application are running the application service thread sends event notifications about the
application progress to an external event listener to form a log of progress. The portal or other desktop
application can listen to this event stream so that the end user has some knowledge about the applications
progress. This service factory tool has been used extensively in the LEAD [Plale2005] gateway portal to
wrap data decoders, data mining tools, weather simulations and graphical rendering engines. It has also
been used in life science applications. A release of this software is available from [Extreme] and
[OGCE]. The portlets associated with SecureGFac (the portlet for creating the application service map
document and the portlet for application execution) are implemented in using Velocity, as described in
Section 2. They use OGCE-compatible inter-portlet data sharing to share Grid credentials.

 14

9. Summary and Future Work
We have surveyed the work of the efforts of the Open Grid Computing Environments collaboration. The
OGCE spans diverse research and development efforts: portlet development environments; Grid
computing abstraction layers; advanced Grid services for information, science application, and data
management; and services for group collaboration. By using accepted standards such as JSR 168-
compatible portlets and Web Services in a common portal architecture (Figure 1), we are able to integrate
these diverse elements. OGCE tools are used in a diverse set of applications, including support plasma
fusion simulations, weather modeling, biophysical simulations, and computational chemistry.

The OGCE provides a diverse set of tools that may be applied to many different science gateway
problems. It is doubtful that any one approach will want or need all of these, and we attempt to provide a
flexible set of tools to allow portal developers to download as much or as little as desired. Our current
“out of the box” delivery consists of core Grid portlets that may be built into the desired portlet container
to provide the downloader with a quick demonstration portal. Additional portlets and services may be
downloaded from the OGCE website. However, as various OGCE services mature, we need to provide a
single download process that supports distributed development. We are working with several new tools
(particularly new versions of the Apache Maven project) can be adapted to provide a single but flexible
download system that can support both minimal downloads (i.e. just providing Grid portlets) to build
processes that can set up entire science gateways.

Several challenges still face science portals and other science gateways, including fine grained
authorization and federated identity. These are addressed in related publications in this special issue.
One particular challenge of general interest is the simplification of science portlet development. Portlets
provide a coarse-grained level of integration and reuse. Environments such as Velocity simplify the
portlet development process and application factories can be used to generate simple user interfaces, but
we see the need for finer-grained components that can simplify the development of portlets, allowing
them to be rapidly composed from reusable Grid widgets rather than programmed.

10. Acknowledgements
The OGCE is funded by the National Science Foundation’s National Middleware Initiative program. The
Java CoG Kit is also supported by the Mathematical, Information, and Computational Science Division
subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

11. References
[Abdelnur2003] Abdelnur, A., Chien, E., and Hepper, S., (eds.) (2003), Portlet Specification 1.0.

Available from http://www.jcp.org/en/jsr/detail?id=168.
[Berman2003] Berman, F., Fox, G., and Hey, T., (eds.). Grid Computing: Making the Global

Infrastructure a Reality, John Wiley & Sons, Chichester, England, ISBN 0-470-85319-0 (2003).
http://www.grid2002.org.

[Booth2004] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D.
“Web Service Architecture.” W3C Working Group Note, 11 February 2004. Available from
http://www.w3c.org/TR/ws-arch.

[DeRoure2005] De Roure, D. Jennings, N.R. Shadbolt, N.R. The Semantic Grid: Past, Present, and
Future. Proceedings of the IEEE, Volume 93, Issue 3, March 2005, Pages 669-681, ISSN: 0018-9219.

[Extreme] The Extreme! Lab Portal Software Web Site: http://www.extreme.indiana.edu/portals.
[Foster2004] Foster, I. and Kesselman, C., (eds.) The Grid 2: Blueprint for a new Computing

Infrastructure, Morgan Kaufmann (2004).

 15

[Fox2003] Geoffrey Fox, Dennis Gannon, Mary Thomas, "Overview of Grid Computing Environments",
Chapter 20 of "Grid Computing: Making the Global Infrastructure a Reality" Fox, Berman, Hey, Eds.,
Wiley 2003.

[Futrelle2005] Futrelle, J., Gaynor, J., and Plutchak, J. “Tupelo Wiki.” Available from
http://tupeloproject.org/.

[Gannon2002] Dennis Gannon, et. al., Programming the Grid: Distributed Software Components, P2P
and Grid Web Services for Scientific Applications,'' Journal of Cluster Computing, 5(3): 325-336
(2002)

[GCE] The Grid Computing Environments Research Group.
[GridPort] The GridPort Project Website. http://www.gridport.net.
[GridSphere] The GridSphere Portal Web Site: http://www.gridsphere.org/gridsphere/gridsphere.
[Hey2002] Hey, A. and Fox, G., eds. Concurrency and Computation: Practice and Experience, Vol. 14,

No. 13-15 (2002). Special issue on Grid Computing Environments.
[Kandaswamy2005] Gopi Kandaswamy, Liang Fang, Yi Huang, Satoshi Shirasuna, Suresh Marru, Dennis

Gannon, Building Web Services for Scientific Grid Applications, to appear IBM journal of Research
and Development. 2005

[Las2001a] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane. A Java Commodity Grid
Kit. Concurrency and Computation: Practice and Experience, 13(8-9):643–662, 2001.
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf.

[Las2001b] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Nell Rehn, and Mike Russell.
Designing Grid-based Problem Solving Environments and Portals. In 34th Hawaiian International
Conference on System Science, Maui, Hawaii, 3-6 January 2001.
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-pse-final.pdf.

[Las2003] Gregor von Laszewski, Jarek Gawor, Sriram Krishnan, and Keith Jackson. Grid Computing:
Making the Global Infrastructure a Reality, chapter Commodity Grid Kits - Middleware for Building
Grid Computing Environments, pages 639–656. Communications Networking and Distributed
Systems. Wiley, 2003. http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid2002book.pdf.

[Las2004] Gregor von Laszewski, Jarek Gawor, Pawel Plaszczak, Mike Hategan, Kaizar Amin, Ravi
Madduri, and Scott Gose. An Overview of Grid File Transfer Patterns and their Implementation in the
Java CoG Kit. Journal of Neural Parallel and Scientific Computing, 12(3):329–352, September 2004.
Special Issue on Grid Computing.
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-overview-gridftp.pdf.

 [Las2005] Gregor von Laszewski and Mike Hategan. Grid Workflow - An Integrated Approach. In To be
published, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne,
IL 60440, 2005. http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf.

[Ludascher2005] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J.
Tao, Y. Zhao,] Scientific Workflow Management and the Kepler System, Concurrency and
Computation: Practice & Experience, Special Issue on Scientific Workflows, to appear, 2005.

[Massie2004]Matthew L. Massie, Brent N. Chun, and David E. Culler,
”The Ganglia Distributed Monitoring System: Design, Implementation, and Experience.”
 Parallel Computing, Vol. 30, Issue 7, July 2004.

[McGuiness2004] McGuiness, D., and Harmelen, F. “OWL Web Ontology Language Overview.” W3C
Recommendation, 10 February 2004. Available from http://www.w3.org/TR/owl-features/.

[Myers2003] Myers, J., Chappell, A., Elder, M., Geist, A. and Schwidder, J. “Reintegrating the Research
Record.” Computing in Science and Engineering, May/June 2003.

[NEES] The NEESit Web Site: http://it.nees.org.
[Nuescheler2005] Nuescheler, D., ed. “JSR 170: Content Repository for Java technology API.” Java

Specification Request, 17 June 2005. Available from
http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html.

[OGCE] The Open Grid Computing Environments Web Site: http://www.collab-ogce.org.

 16

[Oinn2005] Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin Ferris, Kevin
Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren Marvin, Peter Li, Phillip Lord, Matthew
R. Pocock, Martin Senger, Robert Stevens, Anil Wipat and Chris Wroe. Taverna: Lessons in creating
a workflow environment for the life sciences accepted for publication in Concurrency and
Computation: Practice and Experience Grid Workflow Special Issue, to appear 2005.

[Plale2005] Beth Plale, Dennis Gannon, Daniel A. Reed, Sara J. Graves, Kelvin Droegemeier, Bob
Wilhelmson, Mohan Ramamurthy, "Towards Dynamically Adaptive Weather Analysis and
Forecasting in LEAD". International Conference on Computational Science (2) 2005: 624-631.

[Plone] Plone Foundation. “Plone: A user-friendly and powerful open source Content Management
System.” http://plone.org/.

[Rajasekar2002] MySRB & SRB - Components of a Data Grid, Arcot Rajasekar, Michael Wan and
Reagan Moore, The 11th International Symposium on High Performance Distributed Computing
(HPDC-11) Edinburgh, Scotland, July 24-26, 2002. See also the Storage Resource Broker Web Site:
http://www.sdsc.edu/srb/.

[Senger2005] M. Senger, P. Rice, and T. Oinn, ``Soaplab - a unified Sesame door to analysis tools,''
Proceedings of the UK e-Science All Hands Meeting, 2-4 Sep. 2003. See also
http://www.ebi.ac.uk/soaplab/

[Singh2002] Inderjeet Singh, Beth Stearns, Mark Johnson, et al. Designing Enterprise Applications with
the J2EETM Platform, Second Edition. Addison-Wesley, 2002. Available from
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/

[Slominski2005] Aleksander Slominski, On Using BPEL Extensibility to Implement OGSI and WSRF
Grid Workflows, Concurrency and Computation: Practice & Experience, Special Issue on Scientific
Workflows, to appear, 2005.

[Thomas2002] M. Thomas, J. Boisseau. “Building Grid Computing Portals: The NPACI Grid Portal
Toolkit”. "Grid Computing: Making the Global Infrastructure a Reality " edited by Fran Berman,
Geoffrey Fox and Tony Hey, December 2002 by Wiley and Sons.

[Thomas2005] M Thomas, C J Barker, J Boisseau, M Dahan, R Regno, E Roberts, A Seth, T Urban, D
Walling. Experiences on Building a Component-Based Grid Portal Toolkit. Accepted for publication
in Concurrency & Computation: Practice & Experience, 2005.

[uPortal] The uPortal Web Site: http://www.uportal.org.
[Velocity] The Apache Jakarta Velocity Project Web Site: http://jakarta.apache.org/velocity/.
[Zhang2004] X. Zhang and J. Schopf, “Performance Analysis of the Globus Toolkit Monitoring and

Discovery Service, MDS2.” Proceedings of the International Workshop on Middleware Performance
(MP 2004), part of the 23rd International Performance Computing and Communications Workshop
(IPCCC), April 2004.

