Multi-Paradigm Run Time MPR for Multicore Systems
Multicore architectures are bringing parallel computing to a broad range of applications with profound impact on hardware, systems software and applications [1-3].  The programming models and runtime that will be used on multicore architectures are the subject of substantial academic and industry research and development as they must bridge between current commercial desktop and server systems, commercial parallel databases, distributed Grid environments and the massively parallel supercomputers largely aimed at science and engineering [4]. Intel [5] has examined classes of possible future desktop applications which they term RMS – Recognition, Mining and Synthesis. This can be illustrated by a sophisticated datamining application that first accesses a parallel database and then runs analysis algorithms including perhaps a multithreaded branch and bound search, and a SVM Support Vector Machine built on parallel linear algebra followed by sophisticated visualization. This composite application would need to be controlled by a coarse grain executive similar to Grid workflow [6] or Google MapReduce [7]. The individual datamining filters could use either the dynamic thread parallelism appropriate for a combinatorial search algorithm or an MPI style messaging for parallel linear algebra used in the SVM filter. Further we would like this job to run efficiently and seamlessly either internally to a single CPU or across a tightly coupled cluster or distributed Grid. In this white paper we highlight a small part of the multicore puzzle – namely what could be the runtime that could span these different environments and different platforms that would be used by the heterogeneous composite applications that could be common on future multicore applications for personal, commercial or research use. 
We suggest that it would be very important to have a common run time to support the key parallel models so we can integrate modules of different styles. Four low level run time scenarios are MPI collective messaging, asynchronous threading; coarse grain functional parallelism or workflow and discrete event simulation. We have looked at the first three paradigms in a recent paper (http://grids.ucs.indiana.edu/ptliupages/publications/CCRApril16open.pdf) and shown that CCR is a possible messaging substrate with good performance across the different paradigms. CCR developed in Microsoft Research is a runtime [8-9] designed for robotics applications [10] but also investigated [11] as a general programming paradigm. There are obviously other choices and for understanding how to develop and compare such runtimes, we suggest that it would useful to discuss both the API’s and performance requirements for multi-paradigm runtimes. In particular, we wonder if it would be useful to define a simpler core MPI so that would be easier to incorporate into the set of multi-paradigm API’s. For example CCR has a few core capabilities and one builds additional functionality with a convenient C# framework. One could then only put the ability to do MPI style collective loosely synchronous communication into MPR (Multi Paradigm Run Time) and allow extensions. We suggest that our work suggests an MPR is feasible but it needs more work to evaluate other requirements (such as OpenMP, HPCS languages [12], interoperation with transactional memory and locks) and other languages (C, Java and functional languages seem especially important) that could constrain MPR.
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