
Procedia Computer Science 00 (2012) 1–10

Procedia Computer
Science

Adaptive Interpolation of Multidimensional Scaling

Seung-Hee Bae, Judy Qiu, Geoffrey Fox

School of Informatics and Computing, Indiana University

Abstract

The recent explosion of publicly available biology gene sequences and chemical compounds offers an unprece-
dented opportunity for data mining. To make data analysis feasible for such vast volume and high-dimensional
scientific data, we apply high performance dimension reduction algorithms. It facilitates the investigation of unknown
structures in a three dimensional visualization. Among the known dimension reduction algorithms, we utilize the
multidimensional scaling (MDS) algorithm to configure the given high-dimensional or abstract data into the target
dimension. However, MDS algorithm requires large physical memory as well as computational resources. In order
to reduce computational complexity and memory requirement effectively, the interpolation method of MDS was pro-
posed in 2010. With minor trade-off of approximation, interpolation method makes it possible to process millions of
data points with modest amounts of computation and memory requirement. In this paper, we would like to improve
the mapping quality of the interpolation approach to MDS by adapting the the original dissimilarity based on the ratio
between the original dissimilarity and the corresponding mapping distances. Our experimental results illustrate that
the quality of interpolated mapping results are improved by adding the adaptation step without runtime loss com-
pared to the original interpolation method. With the proposed adaptive interpolation method, we construct a better
configuration of millions of out-of-sample data into the target dimension than the previous interpolation method.

Keywords: dimension reduction, multidimensional scaling, interpolation, adaptation

1. Introduction

Due to the advancements in science and technologies for last several decades, every scientific and technical fields
generates a huge amount of data in every minute in the world. We are really in the data deluge era. In reflection of data
deluge era, data-intensive scientific computing [1] has been emerging in the scientific computing fields and getting
more interested by many people. To analyze those incredible amount of data, many data mining and machine learning
algorithms have been developed. Among many data mining and machine learning algorithms that have been invented,
we focus on dimension reduction algorithms, which reduce data dimensionality from original high dimension to target
dimension, in this paper.

Among many dimension reduction algorithms, such as principle component analysis (PCA), generative topo-
graphic mapping (GTM) [2, 3], self-organizing map (SOM) [4], and multidimensional scaling (MDS) [5, 6], we
discuss about MDS in this paper since it is popular and theoretically strong. The parallelization of MDS algorithm

Email address: sebae@cs.indiana.edu(Seung-Hee Bae), xqiu@indiana.edu(Judy Qiu), gcf@indiana.edu(Geoffrey Fox)

(Geoffrey Fox)

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 2

was studied in [7] which aims to utilize multicore clusters and to increase the computational capability with minimal
overhead for the purpose of investigating large data sets, such as 100,000 data points. However, parallelization of an
MDS algorithm, whose computational complexity and memory requirement is upto O(N2) where N is the number of
points, is still limited by the memory requirement for huge data, e.g. millions of points, although it utilize distributed
memory environments, such as clusters, for acquiring more memory and computational resources. In this paper, we
try to solve the memory-bound problem by interpolation based on pre-configured mappings of the sample data for
MDS algorithm, so that we can provide configuration of millions points in the target space.

This paper is organized as follows. First, we briefly discuss about multidimensional scaling (MDS) in Section 2.
The various existed methods of out-of-sample approach related to the MDS are explained in Section 3 and Section 4.
Then, the proposed adaptive interpolation method is described in Section 5. The quality comparison between interpo-
lated results and full MDS running results and runtime evaluation of those algorithms are shown in Section 6 followed
by our conclusion in Section 7.

2. Multidimensional Scaling (MDS)

Multidimensional scaling(MDS) [5, 6] is a general term for the techniques of configuration of the given high
dimensional data into target dimensional space based on the pairwise proximity information of the data, while each
Euclidean distance between two points becomes as similar to the corresponding pairwise dissimilarity as possible. In
other words, MDS is a non-linear optimization problem with respect to mapping in the target dimension and original
proximity information.

Formally, the pairwise proximity information is given as an N × N matrix (∆ = [δi j]), where N is the number
of points and δi j is the given dissimilarity value of the original data space between point i and j. (1) Symmetric
(δi j = δ ji), (2) non-negative (δi j ≥ 0), and (3) zero diagonal (δii = 0) are the constraints of the dissimilarity matrix ∆.
By MDS algorithm, the generated mapping could be also represented as an N × L matrix (X), where L is the target
dimension, and each data point xi ∈ RL (i = 1, . . . ,N) resides in i-th rows of X.

The evaluation of the constructed configuration is done with respect to the well-known objective functions of
MDS, namely STRESS [8] or SSTRESS [9]. Below equations are the definition of STRESS (1) and SSTRESS (2):

σ(X) =
∑

i< j≤N

wi j(di j(X) − δi j)2 (1)

σ2(X) =
∑

i< j≤N

wi j[(di j(X))2 − (δi j)2]2 (2)

where 1 ≤ i < j ≤ N and wi j is a weight value, so wi j ≥ 0.

3. Related Work

Out-of-sample method, which embeds new points with respect to previously configured points, has been actively
researched for recent years, aimed at improving the capability of dimension reduction algorithms by reducing the
computational and memory-wide requirement with the trade-off of slightly approximated mapping result.

In sensor network localization field, when there are only a subset of pairwise distances between sensors and a
subset of anchor locations are available, people try to find out the locations of the remaining sensors. For instance,
semi-definite programming relaxation approaches and its extended approaches has been proposed to solve it [10]. [11]
and [12] proposed out-of-sample extension for the classical multidimensional scaling (CMDS) [13], which is based
on spectral decomposition of a symmetric positive semidefinite matrix (or the approximation of positive semidefinite
matrix), and the embeddings in the configured space are represented in terms of eigenvalues and eigenvectors of it.
[11] projected the new point x onto the principal components, and [12] extends the CMDS algorithm itself to the out-
of-sample problem. In [12], the authors describe how to embed one point between the embeddings of the original n
objects through modification of the original CMDS equations, which preserves the mappings of the original n objects,
with (n+1)×(n+1) matrix A2 instead of n×n matrix ∆2, and extends to embedding a number of points simultaneously
by using matrix operations. Recently, a multilevel force-based MDS algorithm was proposed as well [14].

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 3

In contrast to applying out-of-sample problem to CMDS, out-of-sample approach to metric MDS with STRESS
criteria of Eq. (1) was proposed by Bae et al. [15], which finds embeddings of approximating to the distance (or
dissimilarity) rather than the inner product as in CMDS, with an gradient descent optimization method, called iterative
majorizing. The details of the iterative majorizing interpolation approach for the MDS problem [15] is explained in
Section 4.

4. Majorizing Interpolation MDS

One of the main limitation of most MDS applications is that it requires O(N2) memory as well as O(N2) compu-
tation. Thus, though it is possible to run them with small data size without any trouble, it is impossible to execute
it with large number of data due to memory limitation, so it could be considered as memory-bound problem. For
instance, Scaling by MAjorizing of COmplicated Function (SMACOF) [16, 17], a well-known MDS application via
Expectation-Maximization (EM) [18] like approach, uses six N ×N matrices. If N = 100, 000, then one N ×N matrix
of 8-byte double-precision numbers requires 80 GB of main memory, so the algorithm needs to acquire at least 480
GB of memory to store six N × N matrices. It is possible to run parallel version of SMACOF with MPI on the testbed
system in Table 1 with N = 100, 000. If the data size is increased only twice, however, then SMACOF algorithm
should have 1.92 TB of memory, which is bigger than total memory of the system in Table 1 (1.536 TB), so it is
impossible to run it within the cluster. Increasing memory size will not be a solution, even though it could increase
the runnable number of points. It will encounter the same problem as the data size increases.

To solve this obstacle, Bae et al. developed a simple interpolation approach based on pre-mapped MDS result
of the sample of the given data [15]. The interpolation algorithm [15] is similar to k nearest neighbor (k-NN) clas-
sification [19], but it approximates new mapping position of the new point based on the positions of k-NN, among
pre-mapped subset data, instead of classifying it. For the purpose of deciding new mapping position in relation to the
k-NN positions, iterative majorization method is applied as similar as SMACOF [16, 17] algorithm. The algorithm
proposed in [15] is called Majorizing Interpolation of MDS (hereafter MI-MDS), and the summary of MI-MDS is in
this section as below.

The MI-MDS algorithm is implemented as follows. We are given N data in high-dimensional space, say D-
dimension, and proximity information (∆ = [δi j]) of those data as in Section 2. Among N data, the configuration of
the n sample points in L-dimensional space, x1, . . . , xn ∈ RL, called X, are already constructed by an MDS algorithm,
here we use SMACOF algorithm. Then, we select k nearest neighbors (p1, . . . , pk ∈ P) of the given new point, among
n pre-mapped points with respect to corresponding δix, where x represents the new point. Linear search is used to
find k-nearest neighbors among n-sampled data, so that the complexity of finding k-nearest neighbors is O(n) per one
interpolated point (here x). Finally, the new mapping of the given new point x ∈ RL is calculated based on the pre-
mapped position of selected k-NN and corresponding proximity information δix. The finding new mapping position
is considered as a minimization problem of STRESS (3) as similar as normal MDS problem with m points, where
m = k + 1. However, only one point (x) is movable among m points, so we can simplify STRESS equation (3) as
belows (Eq. (4)), and we set wi j = 1, for ∀i, j in order to simplify.

σ(X) =
∑

i< j≤m

(di j(X) − δi j)2 (3)

= C +

k∑
i=1

d2
ix − 2

k∑
i=1

δixdix (4)

where δix is the original dissimilarity value between pi and x, dix is the Euclidean distance of mappings in L-dimension
between pi and x, and C is constant part. The second term of Eq. (4) can be deployed as following:

k∑
i=1

d2
ix = ‖x − p1‖

2 + · · · + ‖x − pk‖
2 (5)

= k‖x‖2 +

k∑
i=1

‖pi‖
2 − 2xt q (6)

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 4

where qt = (
∑k

i=1 pi1, . . . ,
∑k

i=1 piL) and pi j represents j-th element of pi. In order to establish majorizing inequality,
we apply Cauchy-Schwarz inequality to −dix of the third term of Eq. (4). Please, refer to chapter 8 in [6] for details of
how to apply Cauchy-Schwarz inequality to −dix. Since dix = ‖pi − x‖, −dix could have following inequality based on
Cauchy-Schwarz inequality:

−dix ≤

∑L
a=1(pia − xa)(pia − za)

diz
(7)

=
(pi − x)t(pi − z)

diz
(8)

where zt = (zi, . . . , zL) and diz = ‖pi − z‖. The equality in Eq. (7) occurs if x and z are equal. If Eq. (8) is applied to
the third term of Eq. (4), then we obtain

−

k∑
i=1

δixdix ≤ −

k∑
i=1

δix

diz
(pi − x)t(pi − z) (9)

= −xt
k∑

i=1

δix

diz
(z − pi) + Cρ (10)

where Cρ is a constant. If Eq. (6) and Eq. (10) are applied to Eq. (4), then it could be like following:

σ(X) = C +

k∑
i=1

d2
ix − 2

k∑
i=1

δixdix (11)

≤ C + k‖x‖2 − 2xt q +

k∑
i=1

‖pi‖
2 − 2xt

k∑
i=1

δix

diz
(z − pi) + Cρ (12)

= τ(x, z) (13)

where both C and Cρ are constants. In the Eq. (13), τ(x, z), a quadratic function of x, is a majorization function of the
STRESS. Through setting the derivative of τ(x, z) equal to zero, we can obtain minimum of it; that is

∇τ(x, z) = 2kx − 2q − 2
k∑

i=1

δix

diz
(z − pi) = 0 (14)

x =
q +
∑k

i=1
δix
diz

(z − pi)

k
(15)

where qt = (
∑k

i=1 pi1, . . . ,
∑k

i=1 piL), pi j represents j-th element of pi, and k is the number of nearest neighbor we
selected.

Finally, if we substitute z with x[t−1] in Eq. (15), then we generate an iterative majorizing equation like following:

x[t] = p +
1
k

k∑
i=1

δix

diz
(x[t−1] − pi) (16)

where diz = ‖pi − x[t−1]‖ and p is the average of k-NN’s mapping results. Eq. (16) is an iterative equation used to
embed newly added point into target-dimensional space, based on pre-mapped positions of k-NN. The iteration stop
condition is essentially same as that of SMACOF algorithm, which is

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 5

Algorithm 1 Majorizing Interpolation (MI) algorithm
1: Find k-NN: find k nearest neighbors of x, pi ∈ P i = 1, . . . , k of the given new data based on original dissimilarity
δix.

2: Gather mapping results in target dimension of the k-NN.
3: Calculate p, the average of pre-mapped results of pi ∈ P.
4: Generate initial mapping of x, called x[0], either p or a random variation from p point.
5: Compute σ(S[0]), where S[0] = P ∪ {x[0]}.

6: while t = 0 or (∆σ(S[t]) > ε and t ≤MAX ITER) do
7: increase t by one.
8: Compute x[t] by Eq. (16).
9: Compute σ(S[t]).

10: end while

11: return x[t];

∆σ(S[t]) = σ(S[t−1]) − σ(S[t]) < ε, (17)

where S = P ∪ {x} and ε is the given threshold value.
The time complexity of the MI-MDS algorithm [15] to find mapping of one interpolated point is O(k) on the

basis of Eq. (16), if we assume that the number of iterations of finding one interpolated mapping is very small.
Since finding nearest neighbors takes O(n) and mapping via MI-MDS requires O(k) for one interpolated point, the
overall time complexity to find mappings of overall out-of-sample points (N-n points) via the MI-MDS algorithm is
O(kn(N − n)) ≈ O(n(N − n)), due to the fact that k is usually negligible compared to n or N.

Process of the overall out-of-sample MDS with large dataset could be summarized as following steps: (1) Sam-
pling, (2) Running MDS with sample data, and (3) Interpolating the remain data points based on the mapping results
of the sample data.

The summary of MI-MDS algorithm for interpolation of a new data, say x, in relation to pre-mapping result of the
sample data is described in Alg. 1. Note that the algorithm uses p as an initial mapping of the new point x[0] unless
initialization with p makes dix = 0, since the mapping is based on the k-NN. p makes dix = 0, if and only if all the
mapping position of the k-NN is on the same position. If p makes dix = 0 (i = 1, . . . , k), then the algorithm initializes
a random variation from the p point with the average distance of δix as a starting position of x[0].

5. Adaptive Interpolation of MDS

An intrinsic assumption of MI-MDS [15] is that the mapping distances of k-NNs might be highly likely similar
to the original dissimilarities of k-NNs. In real life, it is unlikely happened because the MDS results, which is used
for prior mapping of sampled data, are usually produced with positive normalized STRESS values, which represent
normalized errors for constructing mappings in target dimension. There is a possibility, however, that the smaller
original dissimilarities will be represented in the smaller distances and the larger will be represented in the larger
distances by the full MDS mappings of sampled data with regard to the distribution of the original dissimilarities and
the distribution of the mapping distances of sampled data in target space. In other words, the mappings within a small
region might be mapped in the target space within a proportional distances of the original dissimilarities by the full
MDS running of the sampled data. On a basis of the above phenomenon, in this paper, we would like to propose an
adaptive interpolation MDS algorithm which aims on the mapping quality improvement compared to the MI-MDS
method.

5.1. Mapping Distance and Original Dissimilarity Comparison

At first, we investigated the distance ratio (r = δi j/di j) between mapping distances among k-NNs (di j) and the
corresponding original dissimilarities among k-NNs (δi j) of each interpolated points based on the prior mappings of

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 6

Ratio

N
um

be
rs

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15.0+

dist_Ratio

Figure 1: Distance Ratio between original dissimilarities among k nearest neighbors and the corresponding mapping distances among k nearest
neighbors. The tested data here is pubchem data of total 100k and 50k sampled case and k = 2.

sampled data and the original pubchem data set. The explanation of the pubchem data is in Section 6. Fig. 1 shows
the distribution of the distance ratio of 100,000 pubchem data with sampling 50,000 when k = 2.

Among about 50,000 cases, over 96% of the distance ratio (r) is larger than 1.0 and around 75% of that is in
between 1.0 and 5.0. Interestingly, the cases of larger than 15.0 occur around 1,000 times. Those are the cases that
the original dissimilarities (δi j) are too small but larger than ZERO. We exclude the case of δi j = 0.0 in Fig. 1. Based
on Fig. 1, we think that the adaptation of the original dissimilarities (δiz) between the interpolated point (pz) and the
k-NNs (pi, where 1 ≤ i ≤ k) can be helpful to get better interpolation mapping result.

5.2. Adaptive Original Dissimilarity of k Nearest Neighbors of an Interpolated Point

In the above section, we found that there are some difference between the prior mapping distances and the corre-
sponding original dissimilarity of k-NNs. Since the interpolation method generates the mapping of each interpolated
point based on the relation to the prior mappings of k-NNs of the point, it will be better to adjust the given original
dissimilarities (δiz) between the interpolated point and its k-NNs based on the distance ratio of its k-NNs. Thus, we
propose an adaptive interpolation MDS algorithm which constructs a mapping of an interpolated point based on the
adapted dissimilarities.

The proposed adaptive interpolation of MDS (hereafter called AI-MDS) will interpolate points in relation to the
prior mappings of the sampled data based on the adaptive dissimilarities between interpolated points and k-NNs.
Those adaptive dissimilarities (δ̂iz)are calculated by multiplying the original dissimilarities (δiz) and the distance ratio
between the average of the original dissimilarities of k-NNs (δk) and the average of the mapping distances of the
corresponding k-NNs (dk), as shown in Eq. (18).

δ̂iz = δiz ·
δk

dk
(18)

Respectively, AI-MDS substitutes Eq. (16) with Eq. (19) for the iterative majorizing interpolation process, by ex-
changing δix with δ̂ix.

x[t] = p +
1
k

k∑
i=1

δ̂ix

diz
(x[t−1] − pi). (19)

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 7

Table 1: Compute cluster systems used for the performance analysis

Nodes 32

CPU Intel Xeon E7450 2.4 GHz

CPU / # Cores per node 4 / 24

Total Cores 768

Memory per node 48 GB

Network 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit

5.3. Parallelization of MDS Interpolation Algorithms

Suppose that, among N points, mapping results of n sample points in the target dimension, say L-dimension, are
given so that we could use those pre-mapped results of n points via MDS interpolation algorithms which are described
above to embed the remaining points (M = N − n). Though interpolation approach is very fast algorithm, i.e. O(Mn),
implementing parallel MDS interpolation algorithms is essential, since the out-of-sample size can be still huge, like
millions. In addition, most of clusters are now in forms of multicore-clusters after multicore-chip invented, so we are
using hybrid-model parallelism, which combine processes and threads together as used in [20, 1].

In contrast to the original MDS algorithm that the mapping of a point is influenced by the other points, inter-
polated points are totally independent one another, except selected k-NN in the MDS interpolation algorithms, and
the independency of among interpolated points makes the MDS interpolation algorithm to be pleasingly-parallel. In
other words, there must be minimum communication overhead. Also, load-balance can be achieved by using a simple
modular calculation to assign interpolated points to each parallel unit, either between processes or between threads,
as the number of assigned points are different at most one each other. Thus, we can parallelize MDS interpolation
algorithms via not only traditional MPI but also the emerging MapReduce [21, 22] runtimes.

6. Analysis of Experimental Results

6.1. Experimental Enviroment

In this section, we provide some experimental analysis for the proposed AI-MDS algorithm. To explore the quality
and performance of the proposed AI-MDS approach discussed in this paper compared to MI-MDS [15], we have used
166-dimensional chemical dataset obtained from PubChem project database1, which is a NIH-funded repository for
over 60 million chemical molecules and provides their chemical structures and biological activities, for the purpose of
chemical information mining and exploration. In this paper we have used randomly selected up to 4 million chemical
subsets for our testing. The computing cluster system we have used in our experiments is demonstrated in Table 1.

6.2. Quality and Runtime Analysis

In this section, we would like to compare the interpolation mapping quality of the proposed AI-MDS to that of
the MI-MDS algorithm as well as the running time of both algorithms. For the quality measurement, we use the
normalized STRESS value (σ) with uniform weights (wi j = 1) defined as in Eq. (20).

σ(X) =

∑
i< j≤N(di j(X) − δi j)2∑

i< j≤N δ
2
i j

(20)

The normalized STRESS will be ONE if all the points are configured at the same position. In this section, when we
use STRESS value term, it means the normalized STRESS value.

1PubChem,http://pubchem.ncbi.nlm.nih.gov/

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 8

Sample size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

●
●

●
●

2e+04 4e+04 6e+04 8e+04 1e+05

Algorithm

● AI−MDS

MI−MDS

MDS

(a) Mapping Quality

Sample size

E
la

ps
ed

 ti
m

e
(s

ec
)

0

5

10

15

20

●

●

●

12.5k 25k 50k

Algorithm

● AI−MDS

MI−MDS

(b) Interpolation Runtime

Figure 2: (a) Mapping quality comparison among full MDS, MI-MDS, and AI-MDS algorithm with 100k pubchem data set with respect to different
sample sizes (n), i.e. 12.5k, 25k, and 50k, when k = 2, and (b) corresponding running time of MI-MDS and AI-MDS.

Fig. 2-(a) illustrates the mapping quality difference between AI-MDS results and MI-MDS results of 100,000
points (hereafter 100k) (N) with respect to the different sample sizes (n). As shown in Fig. 2-(a), the proposed AI-
MDS performs better than MI-MDS in terms of the mapping quality. In detail, if we define the quality degradation
of MI-MDS (σ f ull − σMIMDS) is equal to 1.0, then the quality degradation of AI-MDS (σ f ull − σAIMDS) is 71.9%,
67.2%, and 55.4% of that of MI-MDS with respect to n = 12.5k, 25k, and 50k, correspondingly. In other words, if we
assume that the possible best quality of interpolation approach will be the quality of full MDS running, the proposed
AI-MDS improves the mapping quality about 28.1%, 32.8%, and 44.6% compared to the MI-MDS algorithm with the
test dataset.

We have also compared the interpolation running time of the MI-MDS and the proposed AI-MDS algorithms
in Fig. 2-(a), which is demonstrated in Fig. 2-(b), and it shows very interesting result. We expect the runtime of the
proposed AI-MDS algorithm could be taken slightly longer than or compatible to that of MI-MDS, since the distance
adaptive step is added for the interpolation procedure of each point. However, the runtime analysis in Fig. 2-(b) shows
in the opposite to our expectation. The AI-MDS runs faster than MI-MDS for all test cases. Thus, we have also looked
into detail of the number of iterations for interpolation of each point by MI-MDS and AI-MDS with 50k sample of
100k full data set. The average of iteration numbers by AI-MDS is 1.731, and the average of iteration numbers by
MI-MDS is 1.834. We could understand this phenomenon as the search space of interpolation for each point becomes
more suitable via adapting the dissimilarity.

In addition to the experiments of the fixed full data set in the above analysis, we have also tested the proposed
AI-MDS with larger out-of-sample size cases, i.e. millions of points, as shown in Fig. 3. For the large data test, we
randomly selected 100k pubchem data among over 60-million compounds data as an in-sample set, then we have tried
to interpolate 1 million, 2 millions, and 4 millions (hereafter 1M, 2M, and 4M, correspondingly) chemical compounds
data, which are also randomly selected from the same dataset.

As shown in Fig. 3-(a), the proposed AI-MDS outperforms the MI-MDS method in terms of the mapping quality.
The full MDS is infeasible to generate a mapping of millions of points as the motivation of MDS interpolation
approach [15]. However, we could still compare the mapping quality of those interpolation approach with respect
to the normalized STRESS value of the sample mapping, on the basis of the assumption that the sample mapping
quality could be similar to the full MDS mapping result of all points. If we define the quality degration of MI-MDS
and AI-MDS as same as the previous experiment, the quality degradation of AI-MDS is only about 56.7%, 57.5%,

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 9

Sample size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

●

● ● ●

1e+06 2e+06 3e+06 4e+06

Algorithm

● AI−MDS

MI−MDS

(a) Mapping Quality

Sample size

E
la

ps
ed

 ti
m

e
(s

ec
)

0

500

1000

1500

2000

2500

3000

●

●

●

1M 2M 4M

Algorithm

● AI−MDS

MI−MDS

(b) Interpolation Runtime

Figure 3: (a) Mapping quality comparison between MI-MDS and AI-MDS algorithm with respect to large out-of-sample size (M), i.e. 1M, 2M,
and 4M, with 100k sample pubchem data when k = 2, and (b) corresponding running time of MI-MDS and AI-MDS.

(a) AI-MDS mapping result (b) MI-MDS mapping result

Figure 4: Interpolation Mapping results of 2M compounds by (a) AIMDS and (b) MIMDS with 100k sample data, when k = 2.

and 57.7% compared to the quality degradation of MI-MDS with 100k sample mapping and 1M, 2M, and 4M out-of-
sample data, respectively, which means the AI-MDS improves the quality of interpolation more than 40% compared
to the MI-MDS.

Relating to the runtime of those algorithms, AI-MDS is about 10% faster than MI-MDS as shown in Fig. 3-(b),
which is consistent to Fig. 2-(b). The runtime results in Fig. 2-(b) and Fig. 3-(b) are the runtime of both AI-MDS and
MI-MDS algorithms in hybrid parallel method by using 384 cores of the system in Table 1.

Fig. 4 illustrates the actual interpolation mapping result of 2M out-of-sample points (shown in blue color) based
on 100k prior mapping (which is represented in red color) via (a) AI-MDS and (b) MI-MDS methods. As shown
in Fig. 4-(b), MI-MDS result have points which are configured in the outside of the boundary of the prior mapping
much more than AI-MDS result in Fig. 4-(a). We could interpret those outside mappings in Fig. 4-(b) are affected by

S.-H. Bae et al. / Procedia Computer Science 00 (2012) 1–10 10

the distance discrepancy between the original dissimilarity of each interpolated point and its k-NN and the established
mapping space in the target dimension by the sample mapping.

7. Conclusion

Majorizing interpolation method for multidimensional scaling (MI-MDS) was proposed for the purpose of con-
figuring millions of points via a commodity cluster systems based on the prior mapping of sample data [15]. As
in [15], the MI-MDS method produces mappings of millions of points, which is infeasible via normal MDS methods,
in reduced computational complexity by the cost of mapping quality degradation. Although the quality of MI-MDS
is acceptable, we have investigated how to improve the mapping quality of MI-MDS algorithm in [15].

In this paper, we propose an adaptive interpolation method of MDS (AI-MDS) which aims to improve the mapping
quality of MI-MDS based on the distance ratio between the original dissimilarities and the corresponding mapping
distances in the target space. The proposed AI-MDS shows significant improvement of the mapping quality for the
tested cases. For instance, AI-MDS algorithm configures mappings of millions of out-of-sample data cases which are
improved more than 40%, with regard to the quality degradation from the full MDS mapping quality, compared to
corresponding mappings of MI-MDS. Furthermore, the proposed AI-MDS generates better configuration of the tested
data during faster running time than MI-MDS. The average of iterations for all interpolated points via the proposed
AI-MDS is less than via the previous MI-MDS method, interestingly.

References

[1] G. Fox, S. Bae, J. Ekanayake, X. Qiu, H. Yuan, Parallel data mining from multicore to cloudy grids, in: Proceedings of HPC 2008 High
Performance Computing and Grids workshop, Cetraro, Italy, 2008.

[2] C. Bishop, M. Svensén, C. Williams, GTM: A principled alternative to the self-organizing map, Advances in neural information processing
systems (1997) 354–360.

[3] C. Bishop, M. Svensén, C. Williams, GTM: The generative topographic mapping, Neural computation 10 (1) (1998) 215–234.
[4] T. Kohonen, The self-organizing map, Neurocomputing 21 (1-3) (1998) 1–6.
[5] J. B. Kruskal, M. Wish, Multidimensional Scaling, Sage Publications Inc., Beverly Hills, CA, U.S.A., 1978.
[6] I. Borg, P. J. Groenen, Modern Multidimensional Scaling: Theory and Applications, Springer, New York, NY, U.S.A., 2005.
[7] J. Y. Choi, S.-H. Bae, X. Qiu, G. Fox, High performance dimension reduction and visualization for large high-dimensional data analysis, in:

Proceedings of 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 331–340.
[8] J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika 29 (1) (1964) 1–27.
[9] Y. Takane, F. W. Young, J. de Leeuw, Nonmetric individual differences multidimensional scaling: an alternating least squares method with

optimal scaling features, Psychometrika 42 (1) (1977) 7–67.
[10] Z. Wang, S. Zheng, Y. Ye, S. Boyd, Further relaxations of the semidefinite programming approach to sensor network localization, SIAM

Journal on Optimization 19 (2) (2008) 655–673. doi:http://dx.doi.org/10.1137/060669395.
[11] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, M. Ouimet, Out-of-sample extensions for lle, isomap, mds, eigenmaps, and

spectral clustering, in: Advances in Neural Information Processing Systems, MIT Press, 2004, pp. 177–184.
[12] M. W. Trosset, C. E. Priebe, The out-of-sample problem for classical multidimensional scaling, Computational Statistics and Data Analysis

52 (10) (2008) 4635–4642. doi:http://dx.doi.org/10.1016/j.csda.2008.02.031.
[13] W. S. Torgerson, Multidimensional scaling: I. theory and method, Psychometrika 17 (4) (1952) 401–419.
[14] S. Ingram, T. Munzner, M. Olano, Glimmer: Multilevel mds on the gpu, IEEE Transactions on Visualization and Computer Graphics 15 (2)

(2009) 249–261.
[15] S. Bae, J. Choi, J. Qiu, G. Fox, Dimension reduction and visualization of large high-dimensional data via interpolation, in: Proceedings of

the 19th ACM International Symposium on High Performance Distributed Computing, ACM, 2010, pp. 203–214.
[16] J. de Leeuw, Applications of convex analysis to multidimensional scaling, Recent Developments in Statistics (1977) 133–145.
[17] J. de Leeuw, Convergence of the majorization method for multidimensional scaling, Journal of Classification 5 (2) (1988) 163–180.
[18] A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society.

Series B (1977) 1–38.
[19] T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE Transaction on Information Theory 13 (1) (1967) 21–27.
[20] J. Qiu, S. Beason, S. Bae, S. Ekanayake, G. Fox, Performance of windows multicore systems on threading and mpi, in: 2010 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing, IEEE, 2010, pp. 814–819.
[21] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, in: Proceedings of the 6th conference on Symposium on

Opearting Systems Design & Implementation, USENIX Association, Berkeley, CA, USA, 2004, pp. 137–150.
[22] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communications of the ACM 51 (2008) 107–113.

