
Optimizing OpenCL Kernels
for Iterative Statistical Applications on GPUs

Thilina Gunarathne
Indiana University,

Bloomington, IN 47405, USA
tgunarat@cs.indiana.edu

Bimalee Salpitikorala
Indiana University,

Bloomington, IN 47405, USA
ssalpiti@cs.indiana.edu

Arun Chauhan
Indiana University,

Bloomington, IN 47405, USA
achauhan@cs.indiana.edu

Geoffrey Fox
Indiana University,

Bloomington, IN 47405, USA
gcf@cs.indiana.edu

ABSTRACT
We present a study of three important kernels that occur fre-
quently in iterative statistical applications: K-Means, Multi-
Dimensional Scaling (MDS), and PageRank. We imple-
mented each kernel using OpenCL and evaluated their per-
formance on an NVIDIA Tesla GPGPU card. By exam-
ining the underlying algorithms and empirically measuring
the performance of various components of the kernel we ex-
plored the optimization of these kernels by four main tech-
niques: (1) caching invariant data in GPU memory across
iterations, (2) selectively placing data in different memory
levels, (3) rearranging data in memory, and (4) dividing the
work between the GPU and the CPU. The optimizations re-
sulted in performance improvements of up to 5X, compared
to näıve OpenCL implementations. We believe that these
categories of optimizations are also applicable to other sim-
ilar kernels. Finally, we draw several lessons that would be
useful in not only implementing other similar kernels with
OpenCL, but also in devising code generation strategies in
compilers that target GPGPUs through OpenCL.

1. INTRODUCTION
Iterative algorithms are at the core of the vast majority of
scientific applications, which have traditionally been paral-
lelized and optimized for large multi-processors, either based
on shared memory or clusters of interconnected nodes. As
GPUs have gained popularity for scientific applications, com-
putational kernels used in those applications need to be
performance-tuned for GPUs in order to utilize the hard-
ware as effectively as possible.

Often, when iterative scientific applications are parallelized
they are naturally expressed in a bulk synchronous parallel
(BSP) style, where local computation steps alternate with
collective communication steps [26]. An important class of

such iterative applications are statistical applications that
process large amounts of data. A crucial aspect of large data
processing applications is that they can often be fruitfully
run in large-scale distributed computing environments, such
as clouds.

In this paper, we study three algorithms, which we refer to
as kernels, that find use in such iterative statistical applica-
tions. The intended environment to run these applications is
loosely-connected and distributed, which could be leveraged
using a cloud computing framework, such as MapReduce.
In this paper, we focus on characterizing and optimizing the
kernel performance on a single GPU node. The three kernels
are:

1. K-Means, which is a clustering algorithm used in many
machine learning applications;

2. MDS, which is a set of statistical techniques to visualize
higher dimensional data in three dimensions; and

3. PageRank, which is an iterative link analysis algorithm
relying on sparse matrix-vector multiplication.

These kernels are characterized by high ratio of memory ac-
cesses to floating point operations, thus necessitating care-
ful latency hiding and memory hierarchy optimizations to
achieve high performance. We conducted our study in the
context of OpenCL, which would let us extend our results
across hardware platforms. We studied each kernel for its
potential for optimization by:

1. Caching invariant data in GPU memory to be used across
kernel invocations (i.e., algorithm iterations);

2. Utilizing OpenCL local memory, by software-controlled
caching of selected data;

3. Reorganizing data in memory, to encourage hardware-
driven memory access coalescing or to avoid bank con-
flicts; and

4. Dividing the computation between CPUs and GPUs, to
establish a software pipeline across iterations.

We present detailed experimental evaluation for each ker-
nel by varying different algorithmic parameters. Finally, we
draw some lessons linking algorithm characteristics to the
optimizations that are most likely to result in performance
improvements. This has important implications not only for
kernel developers, but also for compiler developers who wish
to leverage GPUs within a higher level language by compil-
ing it to OpenCL.

2. BACKGROUND
Boosted by the growing demand for gaming power, the tradi-
tional fixed function graphics pipeline of GPUs have evolved
into a full-fledged programmable hardware chain [14].

In this paper we use NVIDIA Tesla C1060 GPGPU card
for our experiments. Tesla C1060 consists of 240 proces-
sor cores and 4 GB global memory with 102 GB/sec peak
memory bandwidth. It has a theoretical peak performance
of 933 GFLOPS for single precision and 78 GFLOPS for
double precision.

It is the general purpose relatively higher level programming
interfaces, such as OpenCL, that have paved the way for
leveraging GPUs for general purpose computing. OpenCL
is a cross-platform, vendor-neutral, open programming stan-
dard that supports parallel programming in heterogeneous
computational environments, including multi-core CPUs and
GPUs [10]. It provides efficient parallel programming capa-
bilities on both data parallel and task parallel architectures.

A compute kernel is the basic execution unit in OpenCL.
Kernels are queued up for execution and OpenCL API pro-
vides a set of events to handle the queued up kernels. The
data parallel execution of a kernel is defined by a multi-
dimensional domain and each individual execution unit of
the domain is referred to as a work item, which may be
grouped together into several work-groups, executing in par-
allel. Work items in a group can communicate with each
other and synchronize execution. The task parallel compute
kernels are executed as single work items.

OpenCL defines a multi level memory model with four mem-
ory spaces: private, local, constant. and global as depicted

Local Memory

Work
Item 1

Work
Item 2

Private Private

Compute Unit 1

Local Memory

Work
Item 1

Work
Item 2

Private Private

Compute Unit 2

Global GPU Memory

Constant Memory

C
P
U

Figure 1: OpenCL memory hierarchy. In the
current NVIDIA OpenCL implementation, private
memory is physically located in global memory.

in Figure 1. Private memory can only be used by single
compute units, while global memory can be used by all the
compute units on the device. Local memory (called shared
memory in CUDA) is accessible in all the work items in
a work group. Constant memory may be used by all the
compute units to store read-only data.

3. ITERATIVE STATISTICAL APPS
Many important scientific applications and algorithms can
be implemented as iterative computation and communica-
tion steps, where computations inside an iteration are inde-
pendent and are synchronized at the end of each iteration
through reduce and communication steps. Often, each iter-
ation is also amenable to parallelization. Many statistical
applications fall in this category. Examples include cluster-
ing algorithms, data mining applications, machine learning
algorithms, data visualization algorithms, and most of the
expectation maximization algorithms. The growth of such
iterative statistical applications, in importance and number,
is driven partly by the need to process massive amounts of
data, for which scientists rely on clustering, mining, and
dimension-reduction to interpret the data. Emergence of
computational fields, such as bioinformatics, and machine
learning, have also contributed to an increased interest in
this class of applications.

Advanced frameworks, such as Twister [9], can support opti-
mized execution of iterative MapReduce applications, mak-
ing them well-suited to support iterative applications in a
large scale distributed environment, such as clouds. Within
such frameworks, GPGPUs can be utilized for execution of
single steps or single computational components. This gives
the applications the best of both worlds by utilizing the
GPGPU computing power and supporting large amounts
of data. One goal of our current study is to evaluate the
feasibility of GPGPUs for this class of applications and to
determine the potential of combining GPGPU computing to-
gether with distributed cloud-computing frameworks. Some
cloud-computing providers, such as Amazon EC2, are al-
ready moving to provide GPGPU resources for their users.
Frameworks that combine GPGPU computing with the dis-
tributed cloud programming would be good candidates for
implementing such environments.

Two main types of data can be identified in these statisti-
cal iterative applications, the loop-invariant input data and
the loop-variant delta values. Most of the time, the loop-
invariant input data, which remains unchanged across the
iterations, are orders of magnitude larger than the loop-
variant delta values. These loop-invariant data can be parti-
tioned to process independently by ifferent worker threads.
These loop-invariant data can be copied from CPU memory
to GPU global memory at the beginning of the computation
and can be reused from the GPU global memory across iter-
ations, giving significant advantages in terms of the CPU to
GPU data transfer cost. To this end, we restrict ourselves
to scenarios where the loop-invariant computational data fit
within the GPU memory, which are likely to be the com-
mon case in large-scale distributed execution environments
consisting of a large number of GPU nodes. Loop-variant
delta values typically capture the result of a single iteration
and will be used in processing of the next iteration by all
the threads, hence necessitating a broadcast type operation

time

CPU1 iter. 1 CPU1 iter. 2 CPU1 iter. 3

GPU iter. 1 GPU iter. 2

CPU2 iter. 1

Figure 2: Software pipelining to leverage GPUs for
loop-level parallelism.

of loop-variant delta values to all the worker threads at the
beginning of each iteration. Currently we use global mem-
ory for this broadcast. Even though constant memory could
potentially result in better performance, it is often too small
to hold the loop-variant delta for the MDS and PageRank
kernels we studied.

It is possible to use software pipelining for exploiting par-
allelism across iterations. Assuming that only one kernel
can execute on the GPU at one time, Figure 2 shows a
scheme for exploiting loop-level parallelism. This assumes
that there are no dependencies across iterations. However,
if the loop-carried dependence pattern is dynamic, i.e., it
may or may not exist based on specific iterations or input
data, then it is still possible to use a software pipelining
approach to speculatively execute subsequent iterations con-
currently and quashing the results if the dependencies are
detected. Clearly, this sacrifices some parallel efficiency. An-
other scenario where such pipelining may be useful is when
the loop-carried dependence is caused by a convergence test.
In such a case, software pipelining would end up executing
portions of iterations that were not going to be executed in
the original program. However, that would have no impact
on the converged result.

Note that if multiple kernels can be executed concurrently
and efficiently on the GPU then the pipelining can be repli-
cated to leverage that capability.

A characteristic feature of data processing iterative statis-
tical applications is their high ratio of memory accesses to
floating point operations, making them memory-bound. As
a result, achieving high performance, measured in GFLOPS,
is challenging. However, software-controlled memory hierar-
chy and the relatively high memory bandwidth of GPGPUs
also offer an opportunity to optimize such applications. In
the rest of the paper, we describe and study the optimiza-
tion on GPUs of three representative kernels that are heavily
used in iterative statistical applications. It should be noted
that even though software pipelining served as a motivating
factor in designing our algorithms, we did not use software
pipelining for the kernels used in this study.

4. K-MEANS CLUSTERING
Clustering is the process of partitioning a given data set
into disjoint clusters. Use of clustering and other data min-
ing techniques to interpret very large data sets has become

increasingly popular with petabytes of data becoming com-
monplace. Each partitioned cluster includes a set of data
points that are similar by some clustering metric and dif-
fer from the set of data points in another cluster. K-Means
clustering algorithm has been widely used in many scientific
as well as industrial application areas due to its simplicity
and the applicability to large data sets [20].

K-Means clustering algorithm works by defining k centroids,
i.e., cluster means, one for each cluster, and associating the
data points to the nearest centroid. It is often implemented
using an iterative refinement technique, where each iteration
performs two main steps:

1. In the cluster assignment step, each data point is assigned
to the nearest centroid. The distance to the centroid is
often calculated as Euclidean distance.

2. In the update step, new cluster centroids are calculated
based on the data points assigned to the clusters in the
previous step.

At the end of iteration n, the new centroids are compared
with the centroids in iteration n− 1. The algorithm iterates
until the difference, called the error, falls below a predeter-
mined threshold. Figure 3 shows an outline of our OpenCL
implementation of the K-Means algorithm.

The number of floating-point operations, F , in OpenCL K-

k e r n e l KMeans(g l o b a l matrix ,
g l o b a l c ent ro id s , g l o b a l assignment ,
l o c a l l o ca lPo in t s , l o c a l l oca lData){

g id = g e t g l o b a l i d (0) ;
l i d = g e t l o c a l i d (0) ;
l z = g e t l o c a l s i z e (0) ;

// Copying c en t r o i d s to shared memory
i f (l i d < cente r sHe ight){

f o r (i n t i =0; i < WIDTH ; i++){
l o c a lPo i n t s [(l i d ∗WIDTH)+ i] =

c en t r o i d s [(l i d ∗WIDTH)+ i] ;
}

}

// Copying data po in t s to shared memory
f o r (i n t i =0; i < WIDTH ; i++){

l o ca lData [l i d +(l z ∗ i)] =
matrix [(g id)+(i ∗ he ight)] ;

}
f o r (i n t j = 0 ; j < cente r sHe ight ; j++){

f o r (i n t i = 0 ; i < width ; i++){
d i s t ance = (l o c a lPo i n t s [(j ∗width)+ i]

− l o ca lData [l i d +(l z ∗ i)]) ;
euDistance += d i s t ance ∗ d i s t ance ;

}
i f (j == 0) {min = euDistance ;}
e l s e i f (euDistance < min) {

min = euDistance ; minCentroid = j ;
}

}
assignment [g id]=minCentroid ;
}

Figure 3: Outline of K-Means in OpenCL.

0

20

40

60

80

100

120

256 2,560 25,600 256,000 2,560,000 25,600,000

G
FL

O
PS

Number of Data Points

Naïve (A)
Data in Local Memory(B)
Data & Centers in Local Mem (C)
C+ Data Coalescing (D)
D + Local Data Points Column Major

Figure 4: K-Means performance with the different optimizations steps, using 2D data points and 300 cen-
troids.

Means per iteration per thread is given by F = (3DM +M),
resulting in a total of F ∗N ∗ I floating-point operations per
calculation, where I is the number of iterations, N is the
number of data points, M is the number of centers, and D
is the dimensionality of the data points.

Figure 4 summarizes the performance of our K-Means imple-
mentation using OpenCL, showing successive improvements
with optimizations. We describe these optimizations in de-
tail in the remainder of this section.

4.1 Caching Invariant Data

0%

5%

10%

15%

20%

25%

30%

1024 10240 102400 1024000 10240000

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Number of Data Points

Figure 5: Performance improvement in K-Means
due to caching of invariant data in GPU memory.

Transferring input data from CPU memory to GPU mem-
ory incurs major cost in performing data intensive statistical
computations on GPUs. The speedup on GPU over CPU
should be large enough to compensate for this initial data
transfer cost. However, statistical iterative algorithms have
loop-invariant data that could be reused across iterations.
Figure 5 depicts the significant performance improvements
gained by reusing of loop-invariant data in K-Means com-
pared with no data reuse (copying the loop-invariant data
from CPU to GPU in every iteration).

4.2 Leveraging Local Memory
In the näıve implementation, both the centroid values as
well as the data points are accessed directly from the GPU
global memory, resulting in a global memory read for each

data and centroid data point access. With this approach, we
were able to achieve performance in the range of 20 GFLOPs
and speedups in the range of 13 compared to single core
CPU1.

The distance from a data point to each cluster centroid gets
calculated in the assignment step of K-Means, resulting in
reuse of the data point many times within a single thread.
This observation motivated us to modify the kernel to copy
the data points belonging to a local work group to the local
memory, at the beginning of the computation. This resulted
in approximately 75% performance increase over the näıve
implementation, as the next line, marked “B”, shows.

Each thread iterates through the centroids to calculate the
distance to the data point assigned to that particular thread.
This results in several accesses (equal to the local work group
size) to each centroid per local work group. To avoid that,
we copied the centroid point to the local memory before the
computation. Caching of centroids values in local memory
resulted in about 160% further performance increase, illus-
trated in the line marked “C” in Figure 4.

The performance curves changes at 8192 data point in Fig-
ure 4. We believe that this is due to the GPU getting sat-
urated with threads at 8192 data points and above, since
we spawn one thread for each data point. For data sizes
smaller than 8192, the GPU kernel computation took a con-
stant amount of time, indicating that GPU might have been
underutilized for smaller data sizes. Finally, the flattening
of the curve for large data sizes is likely because of reaching
memory bandwidth limits.

4.3 Optimizing Memory Access
As the next step, we stored the multi-dimensional data points
in column-major format in global memory to take advantage
of the hardware coalescing of memory accesses. However,
this did not result in any measurable performance improve-
ment as the completely overlapped lines “C” and “D” show,

1We use a 3 GHz Intel Core 2 Duo Xeon processor, with
4 MB L2 cache and 8 GB RAM, in all our experiments.

0

20

40

60

80

100

120

140

256 2,560 25,600 256,000 2,560,000 25,600,000

G
FL

O
PS

Number of Data Points

50

100

200

300

360

(a) K-Means: varying number of centers, using 4D data
points.

0

10

20

30

40

50

60

256 2,560 25,600 256,000 2,560,000 25,600,000

Sp
ee

du
p

(G
PU

 v
s S

in
gl

e
co

re
 C

PU
)

Number of Data Points

4D-300

2D-300

4D-100

2D-100

(b) K-Means: varying number of dimensions.

0

20

40

60

80

100

120

140

256 2,560 25,600 256,000 2,560,000 25,600,000

G
FL

O
PS

Number of Data Points

5 Iterations

10 Iterations

15 Iterations

20 Iterations

(c) K-Means: varying number of iterations.

0.1

1

10

100

1000

10000

256 2,560 25,600 256,000 2,560,000 25,600,000
Ti

m
e

Pe
r I

te
ra
tio

n
(m

s)
Number of Data Points

5 Iterations

10 Iterations

15 Iterations

20 Iterations

(d) K-Means (per iteration): varying number of iterations.

Figure 6: K-Means with varying algorithmic parameters.

in Figure 4.

However, storing the data points in local memory in column-
major format resulted in about 140% performance improve-
ment, relative to the näıve implementation, represented by
the line marked “D + shared data points . . . ” in Figure 4.
We believe that this is due to reduced bank conflicts when
different threads in a local work group access local mem-
ory concurrently. Performing the same transformation for
centroids in local memory did not result in any significant
change to the performance (not shown in the figure). We
believe this is because all the threads in a local work group
access the same centroid point at a given step of the com-
putation, resulting in a bank-conflict free broadcast from
the local memory. All experiments for these results were
obtained on a two-dimensional data set with 300 centroids.

Next, we characterized our most optimized K-Means algo-
rithm by varying the different algorithmic parameters. Fig-
ure 6(a) presents the performance variation with different
number of centroids, as the number of data points increases.
Figure 6(b) shows the performance variation with 2D and 4D
data sets, each plotted for 100 and 300 centroids. The mea-
surements indicate that K-Means is able to achieve higher
performance with higher dimensional data. Finally, Fig-
ures 6(c) and 6(d) show that there is no measurable change
in performance with the number of iterations.

4.4 Sharing Work between CPU and GPU
In the OpenCL K-Means implementation, we follow a hybrid
approach where cluster assignment step is performed in the

GPU and the centroid update step is performed in the CPU.
A single kernel thread calculates the centroid assignment for
one data point. These assignments are then transfered back
to the CPU to calculate the new centroid values. While some
recent efforts have found that performing all the computa-
tion on the GPU can be beneficial, especially, when data
sets are large [8], that approach forgoes the opportunity to
make use of the powerful CPU cores that might also be
available in a distributed environment. Performing partial
computation on the CPU allows our approach to implement
software pipelining within iteration by interleaving the work
partitions and across several iterations through speculation.

4.5 Overhead Estimation
We used a simple performance model in order to isolate
the overheads caused by data communication and kernel
scheduling. Suppose that cs is the time to perform K-Means
computation and os is the total overheads (including data
transfer to and from GPU and thread scheduling), for s data
points. Then, the total running time of the algorithm, Ts is
given by:

Ts = cs + os (1)

Suppose that we double the computation that each kernel
thread performs. Since the overheads remain more or less
unchanged, the total running time, T ′

s, with double the com-
putation is given by:

T ′
s = 2·cs + os (2)

By empirically measuring Ts and T ′
s and using Equations 1

and 2, we can estimate the overheads. Figure 7 shows T ′
s

0%

30%

60%

90%

120%

150%

1

10

100

1000

10000

100000

256 2560 25600 256000 2560000 25600000
Number of Data Points

Double Compute
Regular (Single Compute)
Compute Only
Overhead

Figure 7: Overheads in OpenCL KMeans.

(“double compute”), Ts (“regular”), c (“compute only”) and o
(“overhead”). The running times are in seconds (left vertical
axis) and overhead is plotted as a percentage of the compute
time, c (right vertical axis). Clearly, for small data sets the
overheads are prohibitively high. This indicates that, in
general, a viable strategy to get the best performance would
be to offload the computation on the GPU only when data
sets are sufficiently large. Empirically measured parameters
can guide the decision process at run time.

5. MDS
The objective of multi-dimensional scaling (MDS) is to map
a data set in high-dimensional space to a user-defined lower
dimensional space with respect to pairwise proximity of the
data points [16, 5]. Dimensional scaling is used mainly in
visualization of high-dimensional data by mapping them to
two or three dimensional space. MDS has been used to vi-
sualize data in diverse domains, including, but not limited
to, bio-informatics, geology, information sciences, and mar-
keting.

One of the popular algorithms to perform MDS is Scal-
ing by MAjorizing a COmplicated Function (SMACOF) [7].
SMACOF is an iterative majorization algorithm to solve
MDS problem with STRESS criterion, which is similar to
expectation-maximization. In this paper, we implement the
parallel SMACOF algorithm described by Bae et al [1].

The input for MDS is an N×N matrix of pairwise prox-
imity values, where N is the number of data points in the
high-dimensional space. The resultant lower dimensional
mapping in D dimensions, called the X values, is an N×D
matrix. For the purposes of this paper, we performed an
unweighted mapping resulting in two main steps in the al-
gorithm: (a) calculating new X values, and (b) calculating
the stress of the new X values. There needs to be a global
barrier between the two steps as stress value calculation re-
quires all of the new X values. However the reduction step
for X values in MDS is much simpler than in K-Means. Since
each data point, k, independently produces the value X[k],
the reduction step reduces to simple aggregation in memory.
Figure 8 outlines our OpenCL implementation of MDS.

k e r n e l MDS(g l o b a l f l o a t ∗ data ,
g l o b a l f l o a t ∗ x , g l o b a l f l o a t ∗ newX){

g id = g e t g l o b a l i d (0) ;

f o r (i n t j = 0 ; j < WIDTH ; j++)
{

d i s t ance = d i s t (x [g id] [] , x [j] []) ;
bofZ = k ∗ (data [g id] [j] / d i s t ance) ;
rowSum += bofZ ;
newX [g id] [] += bofz ∗ x [j] [] ;

}

newX [g id] [] += k ∗ rowSum ∗ x [g id] [] ;
newX [g id] [] = newX [g id] [] /WIDTH;

b a r r i e r (CLK GLOBALMEM FENCE) ;

l o c a l f l o a t sigma [] ;
f o r (i n t j = 0 ; j < WIDTH; j++)
{

d i s t ance = d i s t (newX [g id] [] , newX [j] [])
sigma [l i d] += (data [g id] [j]− d i s t ance) ˆ 2 ;

}

s t r e s s = h i e ra ch i ca lReduc t i on (sigma []) ;
}

Figure 8: Outline of MDS in OpenCL.

The number of floating pointer operations, F , per iteration
per thread is given by F = (8DN+7N+3D+1), resulting in
a total of F×N×I floating point operations per calculation,
where I is the number of iterations, N is the number of data
points, and D is the dimensionality of the lower dimensional
space.

5.1 Caching Invariant Data
Similar to K-Means, MDS also has loop-invariant data that
can fit in available global memory and that can be reused
across iterations. Figure 9 summarizes the benefits of doing
that for MDS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 5000 10000 15000 20000

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Number of Data Points (N)

Figure 9: Performance improvement in MDS due to
caching of invariant data in GPU memory.

5.2 Leveraging Local Memory
In a näıve implementation all the data points, X values, and
result (new X values) are stored in global memory. SMA-
COF MDS algorithm uses a significant number of temporary
runtime matrices for intermediate data storage. We restruc-
tured the algorithm to eliminate the larger temporary run
time matrices, as they proved to be very costly in terms of

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000

Pe
rf

or
m

an
ce

 (G
FL

O
PS

)

Number of Data Points (N)

Naïve

Results in Shared Mem

X(k) in shared mem

Data Points Coalesed

(a) MDS performance with the different optimizations steps.

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000

Pe
rf

or
m

an
ce

 (G
FL

O
PS

)

Number of Data Points (N)

10 Iterations

25 Iterations

50 Iterations

100 Iterations

(b) MDS: varying number of iterations.

0

20

40

60

80

100

120

140

160

180

0 5000 10000 15000 20000

G
PU

 S
pe

ed
up

Number of Data Points (N)

10 Iterations

25 Iterations

50 Iterations

100 Iterations

(c) MDS per iteration: varying number of iterations.

Figure 10: MDS with varying algorithmic parameters.

space as well as performance. The kernel was redesigned to
process a single row at a time.

After eliminating the run time data structures, X’[k][] ma-
trix points were used in several locations of the algorithm to
store intermediate results, which were stored in local mem-
ory and copied to global memory only at barrier synchro-
nization. As an added advantage, we were able to reuse the
intermediate values in local memory when calculating the
stress values. This resulted in a significant performance im-
provement (up to about 45%) for intermediate size inputs as
depicted in “Results in Shared Mem” curve of Figure 10(a).

X[k] values for each thread k were copied to local memory
before the computation. X values belonging to the row that
is being processed by the thread gets accessed many more
times compared to the other X values. Hence, copying these
X values to local memory turns out to be worthwhile. “X(k)
in shared mem” curve of Figure 10(a) quantifies the gains.

5.3 Optimizing Memory Access
All data points belonging to the data row that a thread is
processing are iterated through twice inside the kernel. We
encourage hardware coalescing of these accesses by storing
the data in global memory in column-major format, which
causes contiguous memory access from threads inside a lo-
cal work group. Figure 10(a) shows that data placement to
encourage hardware coalescing results in a significant per-

formance improvement.

We also experimented with storing the X values in column-
major format, but it resulted in a slight performance degra-
dation. The access pattern for the X values is different from
that for the data points. All the threads in a local work
group access the same X value at a given step. As we noted
in Section 4.3, we observe a similar behavior with the K-
Means clustering algorithm.

Performance improvements resulting from each of the above
optimizations are summarized in Figure 10(a). Unfortu-
nately, we do not yet understand why the performance drops
suddenly after a certain large number of data points (peaks
at 900 MB data size and drops at 1225 MB data size) and
then begins to improve again. Possible explanations could
include increased data bus contention, or memory bank con-
flicts. However, we would need more investigation to deter-
mine the exact cause. Figures 10(b) and 10(c) show per-
formance numbers with varying number of iterations, which
show similar trends.

5.4 Sharing Work between CPU and GPU
In the case of MDS, there is not a good case for dividing the
work between CPU and GPU. In our experiments, the entire
computation was done on the GPU. On the other hand, as
the measured overheads show below, certain problem sizes
might be better done on the CPU.

5.5 Overhead Estimation
Following the model that was used for K-Means in Sec-
tion 4.5, we performed similar experiments for estimating
kernel scheduling and data transfer overheads in MDS. Fig-
ure 11 shows the results. As in K-Means, we note that the
overheads change with the input data size. In the case of
MDS, however, there are two useful cutoffs, one for small
data sizes and another for large data sizes—on either ends
overheads become high and the computation might achieve
higher performance on the CPU if the data have to be trans-
ferred from the CPU memory, which is what we have as-
sumed in the overhead computations.

0%

12%

24%

36%

48%

60%

1

10

100

1000

10000

100000

64 640 6400
Number of Data Points (N)

Double Compute
Regular (Single Compute)
Compute Only Time
Overhead

Figure 11: Overheads in OpenCL MDS.

6. PAGERANK
PageRank algorithm, developed by Page and Brin [6], an-
alyzes linkage information of a set of linked documents to
measure the relative importance of each document whithin
the set. PageRank of a certain document depends on the
number and the PageRank of other documents linked to it.

PR(pi) =
1− d

N
+ d

∑
pj∈M(pi)

PR(pj)

L(pj)
(3)

k e r n e l PageRankCSR(g l o b a l f l o a t ∗ po inte r s ,
g l o b a l f l o a t ∗ i nd i c e s , g l o b a l f l o a t ∗ x ,
g l o b a l f l o a t ∗ newX){

g id = g e t g l o b a l i d (0) ;

s t a r t = po in t e r s [(g id)] ;
end = po in t e r s [(g id)+1] ;

f o r (i n t i=s t a r t ; i < end ; i++)
{

newRank += ranks [i n d i c e s [i]] ;
}

newRank = ((1−d)/numPages) + (d ∗ newRank) ;
// To avoid s t o r i n g 1/L(pj) in the matrix .
newRanks [g id] = newRank/numPages ;

}

Figure 12: Outline of PageRank (CSR) in OpenCL.

Equation 3 defines PageRank, where {p1, . . ., pN} is the set
of documents, M(pi) is the set of documents that link to
pi, L(pj) is the number of outbound links on pj , and N is
the total number of pages. PageRank calculation can be
performed using an iterative power method, resulting in the
multiplication of a sparse matrix and a vector. The link-
age graph for the web is very sparse and follows a power
law distribution [2], presenting unique implementation chal-
lenges for PageRank.

For our OpenCL PageRank implementation we used a modi-
fied compressed sparse row (CSR) format and modified ELL-
PACK format [4] to store the matrix representing the link
graph. Typically the sparse matrix used for PageRank stores
1/L(pj) in an additional data array. We eliminated the
data array by storing the intermediate page rank values as
PR(pj)/L(pj), significantly reducing memory usage and ac-
cesses. We made a similar modification to ELLPACK for-
mat. We preprocessed and used the Stanford web data set
from the Stanford Large Network Dataset [25] for our ex-
periments. Our implementation is outlined in Figure 12.

6.1 Leveraging Local Memory
We were not able to utilize local memory to store all the
data in the GPU kernel due to the variable sizes of matrix
rows and the large size of the PageRank vector. However, we
used local memory for data points in the ELLPACK kernel.

6.2 Optimizing Memory Access
Due to the irregular memory access pattern arising out of
indirect array accesses, sparse matrix vector computation is
not amenable to memory access optimizations. However, the
index array, especially in the ELLPACK format, is stored in
appropriate order to enable contiguous memory accesses.

6.3 Sharing Work between CPU and GPU
Due to the power law distribution of non-zero elements, a
small number of rows contains a large number of elements,
but a large number of rows are very sparse. In a prepro-
cessing step, the rows are partitioned into two or more sets
of those containing a small number of elements and the re-
mainder containing higher number of elements. The more
dense rows could be computed either on the CPU or the
GPU using the CSR format directly. The rows with smaller
number of non-zero elements are reformatted into the ELL-
PACK format and computed on the GPU. We evaluated
several partitioning alternatives, shown in Figure 13.

The leftmost bars represent the running times on CPU. The
next three bars represents computing all rows with greater
than or equal to k elements on the CPU, where k is 4, 7,
and 16, respectively. The rows with fewer than k elements
are transformed into ELLPACK format and computed on
the GPU. Moreover, when k = 7, two distinct GPU kernels
are used, one for computing rows with up to 3 elements and
another for computing rows with 4 to 7 elements. Similarly,
for k = 16, an additional third kernel is used to process
rows with 8 to 15 elements. Splitting the kernels not only
improves the GPU occupancy, but also allows those kernels
to be executed concurrently.

In Figure 13 we do not include the overheads of the linear
time preprocessing step and of host-device data transfers,

0

200

400

600

800

1000

1200

1400

1600

1800

10 25 50 75 100 125 150

Ti
m

e
(m

s)

Number of Iterations

CPU only

K(i)<4 in ELL, K(i)>=4 in CPU

K(i)<7 in ELL, K(i)>=7 in CPU

K(i)<16 in ELL, K(i)>=16 in CPU

Figure 13: Potential implementations of PageRank.

both of which are relatively easy to estimate. However, we
also do not assume any parallelism between the multiple
kernels processing the rows in ELLPACK format. Our main
observation from these experiments is that sharing work be-
tween CPU and GPU for sparse matrix-vector multiplication
is a fruitful strategy. Moreover, unlike previous attempts
recommending hybrid matrix representation that used a sin-
gle kernel for the part of the matrix in ELLPACK format [4],
our experiments indicate that it is beneficial to use multiple
kernels to handle rows with different numbers of non-zero
elements. The problem of deciding the exact partitioning
and the exact number of kernels is outside the scope of this
paper and we leave that as part of future work.

Instead of computing the matrix partition with denser rows
on the CPU, it could also be computed on the GPU. We
also implemented a sparse matrix-vector product algorithm
using CSR representation on the GPU (not shown in the fig-
ure). Our experiments indicate that GPU can take an order
of magnitude more time for that computation than CPU,
underlining the role of CPU for certain algorithm classes.

7. LESSONS
In this study we set out to determine if we could characterize
some core data processing statistical kernels for commonly
used optimization techniques on GPUs. We focused on three
widely used kernels and four important optimizations. We
chose to use OpenCL, since there are fewer experimental
studies on OpenCL, compared to CUDA, and the multi-
platform availability of OpenCL would allow us to extend
our research to other diverse hardware platforms. Our find-
ings can be summarized as follows:

1. Since parts of the algorithms tend to employ sparse data
structures or irregular memory accesses it is useful to
carry out portions of computation on the CPU.

2. In the context of clusters of GPUs, inter-node communi-
cation needs to go through CPU memory (as of the writ-
ing of this paper in mid-2011). This makes computing on
the CPUs a compelling alternative on data received from
remote nodes, when the CPU-memory to device-memory

data transfer times would more than offset any gains to
be had running the algorithms on the GPUs.

3. Whenever possible, caching invariant data on GPU for
use across kernel invocations significantly impacts per-
formance.

4. While carefully optimizing the algorithms using special-
ized memory is important, as past studies have found,
iterative statistical kernels cause complex trade-offs to
arise due to irregular data access patterns (e.g., in use of
texture memory) and size of invariant data (e.g., in use
of constant memory).

5. Encoding algorithms directly in OpenCL turns out to
be error-prone and difficult to debug. We believe that
OpenCL might be better suited as a compilation target
than a user programming environment.

In the rest of this section we elaborate on these findings.

Sharing work between CPU and GPU. One major issue
in sharing work between CPU and GPU is the host-device
data transfers. Clearly, this has to be balanced against the
improved parallelism across GPUs and multi-core CPUs.
Moreover, within the context of our study, there is also
the issue of how data across nodes get transferred. If the
data must move through CPU memory then in certain cases
it might be beneficial to perform the computation on the
CPU. Through our simple performance model and the over-
head graphs the trade-offs are apparent. These graphs could
also help in determining the cutoffs where offloading com-
putation on the GPU is worthwhile. Finally, in iterative
algorithms, where kernels are invoked repeatedly, offload-
ing part of the computation on the GPUs can also enable
software pipelining between CPU and GPU interleaving dif-
ferent work partitions.

Another factor in determining the division of work is the
complexity of control flow. For instance, a reduction oper-
ation in K-Means, or a sparse matrix-vector multiply with
relatively high density of non-zero values that might involve
a reduction operation, may be better suited for computing

on the CPU. This would be especially attractive if there is
sufficient other work to overlap with GPU computations.

Finally, the differences in precision between CPU and GPU
can sometimes cause an iterative algorithm to require differ-
ent number of iterations on the two. A decision strategy for
scheduling an iterative algorithm between CPU and GPU
may also need to account for these differences.

Unlike other optimizations, the value of this one is deter-
mined largely by the nature of input data. As a result, a
dynamic mechanism to schedule computation just-in-time
based on the category of input could be a more useful strat-
egy than a static one.

GPU caching of loop-invariant data. There turns out to
be a significant amount of data that are invariant and used
across multiple kernel calls. Such data can be cached in GPU
memory to avoid repeated transfers from the CPU memory
in each iteration. However, in order to harness this benefit,
the loop-invariant data should fit in the GPU global memory
and should be retained throughout the computation. When
the size of loop-invariant data is larger than the available
GPU global memory, it is more advantageous to distribute
the work across compute nodes rather than swapping the
data in and out of the GPU memory.

Leveraging Local Memory. It is not surprising that mak-
ing use of faster local memory turns out to be one of the most
important optimizations within OpenCL kernels. In many
cases, decision about which data to keep in local memory is
straightforward based on reuse pattern and data size. For
example, in K-Means and MDS it is not possible to keep the
entire data set in local memory, since it is too big. However,
the centroids in K-Means and intermediate values in MDS
can be fruitfully stored there. Unfortunately, in some cases,
such as portions of MDS, leveraging local memory requires
making algorithmic changes in the code, which could be a
challenge for automatic translators.

Leveraging Texture Memory. Texture memory provides
a way to improved memory access of read-only data that
has regular access pattern in a two-dimensional mapping
of threads when the threads access contiguous chunks of a
two-dimensional array. In the kernels we studied we found
that the best performance was achieved when threads were
mapped in one dimension, even when the array was two-
dimensional. Each thread operated on an entire row of the
array. As a result, our implementation was not conducive
to utilizing texture memory.

Leveraging Constant Memory. As the name suggests, con-
stant memory is useful for keeping the data that is invariant
through the lifetime of a kernel. Unfortunately, the size
of the constant memory was too small to keep the loop-
invariant data, which do not change across kernel calls, for
the kernels that we studied. However, since the data are re-
quired to be invariant only through one invocation of the ker-

nel, it is possible to use constant memory to store data that
might change across kernel calls as long as there is no change
within one call of the kernel. The potential benefit comes
when such data exhibit temporal locality, since the GPU has
a hardware cache to store values read from constant memory
so that hits in the cache are served much faster than misses.
This gives us the possiblity to use constant memory for the
broadcasting of loop-variant data, which are relatively small
and do not change within a single iteration. Still the loop-
variant data for larger MDS and PageRank test cases were
larger than the constant memory size.

Optimizing Data Layout. Laying out data in memory is
a known useful technique on CPUs. On GPUs, we observed
mixed results. While data layout in local memory turned out
to be useful for K-Means and not for MDS, layout in global
memory had significant impact on MDS and no observable
impact on K-Means. This behavior is likely a result of differ-
ent memory access patterns. In general, contiguous global
memory accesses encourage hardware coalescing, whereas on
local memory bank conflicts play a more critical role. Thus,
the two levels of memories require different layout manage-
ment strategies. However, as long as the memory access
patterns are known the benefits are predictable, thus mak-
ing this optimization amenable to automatic translation.

OpenCL experience. OpenCL provides a flexible program-
ing environment and supports simple synchronization prim-
itives, which helps in writing substantial kernels. However,
details such as the absence of debugging support and lack
of dynamic memory allocation still make it a challenge writ-
ing code in OpenCL. One possible way to make OpenCL-
based GPU computing accessible to more users is to develop
compilers for higher level languages that target OpenCL. In-
sights gained through targeted application studies, such as
this, could be a useful input to such compiler developers.

8. RELATED WORK
Emergence of accessible programming interfaces and indus-
try standard languages has tremendously increased the in-
terest in using GPUs for general purpose computing. CUDA,
by NVIDIA, has been the most popular framework for this
purpose [21]. In addition to directly studying application im-
plementations in CUDA [11, 23, 30], there have been recent
research projects exploring CUDA in hybrid CUDA/MPI
environment [22], and using CUDA as a target in automatic
translation [18, 17, 3].

There have been several past attempts at implementing the
K-Means clustering algorithm on GPUs, mostly using CUDA
or OpenGL [24, 12, 27, 19, 15]. Recently, Dhanasekaran et
al. have used OpenCL to impelement the K-Means algo-
rithm [8]. In contrast to the approach of Dhanasekaran et
al., who implemented the reduction step on GPUs in order
to handle very large data sets, we chose to mirror the ear-
lier efforts with CUDA and perform the reduction step on
the CPU. Even though that involves transferring the reduc-
tion data to CPU, we found that the amount of data that
needed to be transferred was relatively small. In optimizing
K-Means, we used the device shared memory to store the
map data. As a result, when dealing with very large data

sets, which motivated Dhanasekaran et al.’s research, our
optimized kernel would run out of shared memory before
the reduction data becomes too large to become a bottle-
neck. Further research is needed to determine the trade-offs
of giving up the optimization of device shared-memory and
performing the reduction on the GPU.

We implemented the MDS kernel based on an SMACOF
implementation by Bae et al. [1]. Glimmer is another multi-
level MDS implementation [13]. While Glimmer implements
multilevel MDS using OpenGL Shading Language (GLSL)
for large data sets, Bae used an interpolated approach for
large data sizes, which has been found to be useful in cer-
tain contexts. This allowed us to experiment with optimiz-
ing the algorithm for realistic contexts, without worrying
about dealing with data sets that do not fit in memory. Our
MDS implementation uses the SMACOF iterative majoriza-
tion algorithm. SMACOF is expected to give better qual-
ity results than Glimmer, even though Glimmer can pro-
cess much larger data sets than SMACOF [13]. Since our
study is in the context of GPU clusters, with potentially
vast amounts of distributed memory, we traded off in favor
of a more accurate algorithm.

The computationally intensive part of PageRank is sparse
matrix-vector multiplication. We followed the guidelines
from an NVIDIA study for implementing the sparse matrix-
vector multiplication [4]. The sparse matrix in PageRank
algorithm usually results from graphs following power law.
Recent efforts to optimize PageRank include using a low-
level API to optimize sparse matrix-vector product by using
the power law characteristics of the sparse matrix [28]. More
recently, Yang et al. leveraged this property to auto-tune
sparse matrix-vector multiplication on GPUs [29]. They
built an analytical model of CUDA kernels and estimated
parameters, such as tile size, for optimal execution.

9. CONCLUSION AND FUTURE WORK
We have presented an experimental evaluation of three im-
portant kernels used in iterative statistical applications for
large scale data processing, using OpenCL. We evaluated
three optimization techniques for each, based on leveraging
fast local memory, laying out data for faster memory ac-
cess, and dividing the work between CPU and GPU. We
conclude that leveraging local memory is critical to perfor-
mance in almost all the cases. Data layout is important in
certain cases, but when it is, it has significant impact. In
contrast to other optimizations, sharing work between CPU
and GPU may be input data dependent, as in the case of
K-Means, which points to the importance of dynamic just-
in-time scheduling decisions.

Our planned future work includes extending the kernels to a
distributed environment, which is the context that has moti-
vated our study. Other possible directions include compar-
ing the OpenCL performance with CUDA, studying more
kernels from, possibly, other domains, and exploring more
aggressive CPU/GPU sharing on more recent hardware that
has improved memory bandwidth.

10. ACKNOWLEDGEMENTS
Thilina was supported by National Institutes of Health grant
5 RC2 HG005806-02. We thank Sueng-Hee Bae, BingJing

Zang and Li Hui for the algorithmic insights they provided
for the applications discussed in this paper. We thank our
anonymous reviewers for providing constructive comments
and suggestions to improve the paper.

11. REFERENCES
[1] S.-H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox.

Dimension reduction and visualization of large
high-dimensional data via interpolation. In
Proceedings of the 19th ACM International
Symposium on HIgh Performance Distributed
Computing (HPDC), pages 203–214, 2010.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, Oct. 1999.

[3] M. M. Baskaran, J. Ramanujam, and P. Sadayappan.
Automatic C-to-CUDA code generation for affine
programs. In In Proceedings of the 19th International
Conference on Compiler Construction (CC), pages
244–263, 2010.

[4] N. Bell and M. Garland. Efficient sparse matrix-vector
multiplication on CUDA. NVIDIA Technical Report
NVR-2008-004, NVIDIA Corporation, Dec. 2008.

[5] I. Borg and P. J. F. Groenen. Modern
Multidimensional Scaling: Theory and Applications.
Statistics. Springer, second edition, 2005.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In Proceedings of the
Seventh International World Wide Web Conference,
volume 30 of Computer Networks and ISDN Systems,
pages 107–117, Apr. 1998.

[7] J. de Leeuw. Convergence of the majorization method
for multidimensional scaling. Journal of Classification,
5(2):163–180, 1988.

[8] B. Dhanasekaran and N. Rubin. A new method for
GPU based irregular reductions and its application to
k-means clustering. In Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU-4), 2011.

[9] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister: A runtime for
iterative MapReduce. In Proceedings of the 19th ACM
International Symposium on High Performance and
Distributed Computing (HPDC), pages 810–818, 2010.

[10] K. Group. OpenCL: The open standard for parallel
programming of heterogeneous systems. On the web.
http://www.khronos.org/opencl/.

[11] T. R. Halfhill. Parallel processing with CUDA.
Microprocessor Report, Jan. 2008.

[12] B. Hong-tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and
L. He. K-Means on commodity GPUs with CUDA. In
Proceedings of the 2009 WRI World Congress on
Computer Science and Information Engineering, 2009.

[13] S. Ingram, T. Munzner, and M. Olano. Glimmer:
Multilevel MDS on GPU. IEEE Transactions on
Visualization and Computer Graphics, 15(2):249–261,
2009.

[14] M. Johansson and O. Winter. General purpose
computing on graphics processing units using
OpenCL. Masters thesis, Chalmers University of
Technology, Department of Computer Science and
Engineering Göteborg, Sweden, June 2010.

[15] K. J. Kohlhoff, M. H. Sosnick, W. T. Hsu, V. S.

Pande, and R. B. Alteman. CAMPAIGN: An
open-source library of GPU-accelerated data
clustering algorithms. Bioinformatics, 2011.

[16] J. B. Kruskal and M. Wish. Multidimensional Scaling.
Sage Publications Inc., 1978.

[17] S. Lee and R. Eigenmann. OpenMPC: Extended
OpenMP programming and tuning for GPUs. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC 2010), 2010.

[18] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to
GPGPU: A compiler framework for automatic
translation and optimization. In Proceedings of the
14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2009.

[19] Y. Li, K. Zhao, X. Chu, and J. Liu. Speeding up
K-Means algorithm by GPUs. In Proceedings of the
2010 IEEE 10th International Conference on
Computer and Information Technology (CIT), pages
115–122, 2010.

[20] S. P. Lloyd. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137,
Mar. 1982.

[21] NVIDIA. NVIDIA CUDA Compute Unified Device
Architecture: Programming Guide, version 1.1 edition,
Nov. 2007.

[22] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and
G. Mudalige. Performance analysis of a hybrid
MPI/CUDA implementation of the NAS-LU
benchmark. In Proceedings of the First International
Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computing
Systems (PMBS), 2010.

[23] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W. mei W Hwu. Optimization
principles and application performance evaluation of a
multithreaded GPU using CUDA. In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages
73–82, 2008.

[24] S. A. A. Shalom, M. Dash, and M. Tue. Efficient
K-Means clustering using accelerated graphics
processors. In Proceedings of the 10th International
Conference on Data Warehousing and Knowledge
Discovery (DaWak), volume 5182 of Lecture Notes in
Computer Science, pages 166–175, 2008.

[25] SNAP. Stanford network analysis project. On the web.
http://snap.stanford.edu/.

[26] L. G. Valiant. Bulk-synchronous parallel computers.
In M. Reeve, editor, Parallel Processing and Artificial
Intelligence, pages 15–22. John Wiley & Sons, 1989.

[27] R. Wu, B. Zhang, and M. Hsu. GPU-accelerated large
scale analytics. Technical Report HPL-2009-38,
Hewlett Packard Lts, 2009.

[28] T. Wu, B. Wang, Y. Shan, F. Yan, Y. Wang, and
N. Xu. Efficient PageRank and SpMV computation on
AMD GPUs. In Proceedings of the 39th International
Conference on Parallel Processing (ICPP), pages
81–89, 2010.

[29] X. Yang, S. Parthasarathy, and P. Sadayappan. Fast
sparse matrix-vector multiplication on GPUs:
Implications for graph mining. Proceedings of the

VLDB Endowment, 4(4):231–242, 2011.

[30] H. Zhou, K. Lange, and M. A. Suchard. Graphics
processing units and high-dimensional optimization.
Statistical Science, 25(3):311–324, 2010.

