POSTER: Performance of a Multi-Paradigm Messaging Runtime on Multicore Systems
Xiaohong Qiu1, Geoffrey Fox2, H. Yuan2, Seung-Hee Bae2, George Chrysanthakopoulos3, Henrik Nielsen3
1Research Computing UITS 2Community Grids Laboratory 3Microsoft Research
Indiana University Bloomington Indiana University Bloomington Redmond WA

Broad deployment of multicore systems in commodity situations has highlighted the need for parallel environments that support a wider range of application than those on traditional parallel supercomputers. In particular it seems likely that one will build composite applications with components running in parallel on individual or clustered multicore systems. Further, each component could need distinct run-times to support different parallel execution models. These include MPI-style loosely synchronous executive, dynamic threading, and discrete event simulation. These microscopic parallel paradigms would be composed by an overarching coarse grain functional parallelism. In the language of Berkeley’s position paper [1], we need to support the parallelism of applications matching the style of individual kernels or dwarves and their composition into complete applications. We are researching a runtime that will support such heterogeneous applications with good performance for each paradigm and their integration [2]. Here we report on an evaluation of Concurrency and Coordination Runtime (or CCR [3]) from Microsoft as such a multi-paradigm runtime. CCR supports a distributed, state-oriented service framework known as DSS (or Decentralized System Services [4]). DSS allows us to compose composite applications using Grid/Web service workflow and Web 2.0 mashups. This approach is well known to parallel computing with AVS, SCIRun and Khoros well known examples of coarse grain functional programming models.
In this poster, we present key performance measurements for the integrated Grid and MPI style parallel computing. We give results on message latency and bandwidth for two processor multicore systems based on AMD and Intel architectures with a total of four and eight cores. Generating up to a million messages per second on a single PC, we find on the AMD-based PC, latencies from 5µs in basic asynchronous threading to 16 µs for a full MPI_SENDRECV exchange with all threads (one per core) sending and receiving 2 messages at a traditional MPI style loosely synchronous rendezvous. Coarse grain workflow latencies are measured as less than 40 µs for DSS. All results come from the CCR and DSS software freely available as part of the Microsoft Robotics Studio [5] distribution. We compare our C# results with Java that shows an order of magnitude larger latency using Axis2 and the new MPJ Express [6] implementation of MPI. We also analyze in detail the performance of a complete application (clustering Cheminformatics data) implemented with DSS and CCR looking at memory bandwidth and parallel synchronization overheads as well as the DSS workflow overheads.
Looking to the future, we suggest that the ease of programming custom collectives using the CCR primitives make it attractive to consider building a full MPI runtime on top of it. This would have fully asynchronous queued messaging, integration with workflow and thread-based programming, rendezvous and active message mode, support of managed code (C#), and ability to run on cluster and multicore systems. The integration of workflow and Web 2.0 mashups (such as Google MapReduce or Yahoo Pipes) with DSS/CCR raises important data handling issues in the combination of shared and distributed memory.
Reference

[1] Krste Asanovic et al. The Landscape of Parallel Computing Research: A View from Berkeley Technical report December 18 2006. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
[2] Xiaohong Qiu, Geoffrey Fox, George Chrysanthakopoulos, Henrik Frystyk Nielsen High Performance Multi-Paradigm Messaging Runtime on Multicore Systems Technical Report April 16 2007 http://grids.ucs.indiana.edu/ptliupages/publications/CCRApril16open.pdf

[3] Concurrency and Coordination Runtime (CCR) http://channel9.msdn.com/wiki/default.aspx/Channel9.ConcurrencyRuntime
[4] Decentralized Software Services (DSS) http://msdn.microsoft.com/robotics/media/DSSP.pdf
[5] Microsoft Robotics Studio. http://msdn.microsoft.com/robotics/
[6] MPJ Express. http://acet.rdg.ac.uk/projects/mpj/.
