Using SWARM service for a GRID based
Sequence Assembly

Karthik Narayan Muthuraman
Primary Advisor : Dr. Geoffrey Fox

May 23, 2010

Contents

1 Abstract

2 Introduction
3 Teragrid

4 Swarm

5 Materials and Methods
5.1 Repeat Masker Lo
52 PaCE
5.3 CAP3
5.4 BLAST

6 Results

1 Abstract

EST Sequence Assembly is the process of assembling Expressed Sequence
tags to contigs and identifying the genes and predicting the gene functions in
the organism. The process is highly time consuming and memory intensive
and running the process on a desktop or a small server is not feasible. This
entails a large scale computing environment to run the pipeline of programs
involved and a mechanism to submit the programs to the large scale resource
and track the status. In this project, we are using TeraGrid, a open scientific
discovery infrastructure which integrates the several high performace clus-
ters available across the country and a high level job scheduling web service
framework SWARM, to submit and run jobs on the TeraGrid.

In this paper, I demonstrate the importance of the EST sequence assem-
bly problem, the motivation for using grid computing resources and SWARM,
and a performance evaluation of the system in comparison with one of the
existing EST Sequence assembly programs, the EST Piper, which does not
use Grid resources.

2 Introduction

EST Sequence assembly is the process of assembling Expressed Sequence
Tags [1] of an organism to contigs and then predicting gene functions from
them. At the beginning of the EST project the starting material for the
construction of ¢cDNA library [9] is selected. This can be cells, tissues or
even whole organisms. From this, the messenger RNAs are isolated. mRNAs
are highly unstabe and so they are Reverse Transcribed to relatively more
stable forms called the complementary DNA or ¢cDNA. The ¢cDNA has to
be amplified to form a ¢cDNA library. This is accomplished by cloning the
c¢DNA into plasmid vectors. The plasmids are amplified by transforming the
bacterium E-coli to generate the cDNA library. The ¢DNA library forms
the basis of generating EST sequences. Usually the cloning of cDNA is done
directionally, that is, it is known at which end of the vector the 5 prime
and 3 prime ends of the cDNA are located. The cloned sequence can thus be
sequenced from both ends simultaneously. The identified nucleotide sequence
can be exported to a computer and the raw data is then processed.

ESTs are randomly extracted sequences from the cDNA library. The
ESTs have to be cleaned to remove repetetive regions and low complexity
regions from them, which should not be considered for assembly. The cleaned
ESTs are then clustered based on multiple sequence alignment and the are

grouped to clusters based on overlapping regions or the consensus region.
The consensus region in each cluster is then assembled to a contig. Genes
can be predicted [5] from contigs using tools like ORF Predictor, Glimmer
or Meme or the contigs can be blasted against a known protein database to
identify the functions of the gebes predicted by the contigs.

3 Teragrid

TeraGrid [6] is an open scientific discovery infrastructure combining
leadership class resources at eleven partner sites to create an integrated,
persistent computational resource. Using high-performance network connec-
tions, the TeraGrid integrates high-performance computers, data resources
and tools, and high-end experimental facilities around the country. Currently,
TeraGrid resources include more than a petaflop of computing capability and
more than 30 petabytes of online and archival data storage, with rapid access
and retrieval over high-performance networks. Researchers can also access
more than 100 discipline-specific databases. With this combination of re-
sources, the TeraGrid is the world’s largest, most comprehensive distributed
cyberinfrastructure for open scientific research.

TeraGrid is coordinated through the Grid Infrastructure Group (GIG)
at the University of Chicago, working in partnership with the Resource
Provider sites: Indiana University, the Louisiana Optical Network Initia-
tive, National Center for Supercomputing Applications, the National Insti-
tute for Computational Sciences, Oak Ridge National Laboratory, Pittsburgh
Supercomputing Center, Purdue University, San Diego Supercomputer Cen-
ter, Texas Advanced Computing Center, and University of Chicago/Argonne
National Laboratory, and the National Center for Atmospheric Research.

TeraGrid resources are integrated through a service oriented architec-
ture in that each resource provides a "service” that is defined in terms of
interface and operation. Computational resources run a set of software pack-
ages called ”Coordinated TeraGrid Software and Services” (CTSS). CTSS
provides a familiar user environment on all TeraGrid systems, allowing sci-
entists to more easily port code from one system to another. CTSS also
provides integrative functions such as single-signon, remote job submission,
workflow support, data movement tools, etc. CTSS includes the Globus
Toolkit, Condor, distributed accounting and account management software,
verification and validation software, and a set of compilers, programming
tools, and environment variables.

TeraGrid uses a 10 Gigabits per second dedicated optical backbone net-

work, with hubs in Chicago, Denver, and Los Angeles. All resource provider
sites connect to a backbone node at 10 Gigabits per second. TeraGrid users

access the facility through national research networks such as the Internet2
Abilene backbone and National LambdaRail.

4 Swarm

Swarm [8] is a high-level job scheduling Web service framework, devel-
oped for scientific applications that must submit massive number of high-
throughput jobs or workflows to highly distributed computing clusters. The
Swarm service itself is designed to be extensible, lightweight, and easily in-
stallable on a desktop or small server. As a Web service, derivative services
based on Swarm can be straightforwardly integrated with Web portals and
science gateways. The SWARM service is capable of scheduling millions of
jobs over distributed clusters, monitoring framework for large scale jobs, a
user based job scheduling service, ranking grid resources based on predicted
wait times and provides a standard Web Service interface for web applica-
tions.

Users access the Swarm framework through a simple Web service client.
This is useful for desktop users and Gateway style applications that need
lightweight clients. This ease-of-use feature is also applied to file manage-
ment. Swarm provides support for third party job submissions. Users or ap-
plications do not have to maintain input files allowing them to be lightweight.
Thus, after installing the programs we would use on the grid resources, the
programs can be launched by contacting the SWARM web service. We can
specify the resources we need along with queue parameters and other param-
eters required by the program.

Once the user submits a large group of jobs, tracking the status of
these jobs is critical. Swarm provides statistical status reports to the users.
Each of the jobs maintains the status of Requested, for jobs that stay in the
backend Database, Queued, for jobs in the Swarm user queue, Submitted, for
the jobs with available resources, Idle, for the jobs waiting in batch queue
system in the cluster, Completed, for jobs that have completed, Held, for jobs
that been held, Running, for the jobs being executed in the cluster. A status
check provides the summary of the job status.

5 Materials and Methods

Our Grid based EST Sequence assembly uses Repeat Masker for cleaning
of ESTs, PaCFE for parallel clustering, CAPS3 for assembly and BLAST for
homology search. All of these programs are installed in Bigred, Ranger,
Cobalt and Abe. Each of the steps in the pipeline are briefly describe below.

5.1 Repeat Masker

The repetetive and low complexity regions in the ESTs arise because of
the errors in sequencing and have to be removed or masked. This is because,
these regions may produce very high scores even though they are not a part
of a gene. Thus, these regions are not only a burden for the assembler but
affect the quality of the results by producing false hits. Thus, we have the
cleaning module, Repeat Masker as the first step of our pipeline.

RepeatMasker [2] is a program that screens DNA sequences for in-
terspersed repeats and low complexity DNA sequences. The output of the
program is a detailed annotation of the repeats that are present in the query
sequence as well as a modified version of the query sequence in which all the
annotated repeats have been masked (default: replaced by Ns). On average,
almost 50% of a human genomic DNA sequence currently will be masked by
the program. Sequence comparisons in RepeatMasker are performed by the
program cross_match, an efficient implementation of the Smith-Waterman-
Gotoh algorithm developed by Phil Green.

As Repeat Masker is just comparison of the input sequence with database
sequences, we can trivially paralellize it. That is, we can break the input into
smaller chunks which can be handled more easily, and run them in parallel.
As, we use four super computing resources, this would reduce the run time
effectively.

There is a small probability that repeat masker might mask a few non-
repetitive regions in the ESTs. So, we add a post-processing step after run-
ning repeat masker. After getting the output from Repeat Masker, for each
sequence we calculate the length of the region masked and if is less that
10% the length of the original sequence, we take the original sequence in the
place of the masked sequence. If the masked region is more than 10% of the
original sequence, we take the masked sequence. The rationale for the post
processing step is that, if the length of the masked region is too small, then
the probability that it is a repetitive region is low and moreover the sequence
will not burden the assembler.

5.2 PaCE

To enable fast clustering of large-scale EST data, we use PaCE [4] (for
Parallel Clustering of ESTSs), a software program for EST clustering on par-
allel computers. The organization of PaCE is as follows. It first builds a
distributed representation of the GST data structure in parallel. This data
structure is constructed for the input set of EST sequences and their Wat-
sonCrick complements, and is used for on-demand generation of promising
pairs of ESTs in decreasing order of maximal common substring length. The
pair generation itself is done in parallel. Maintaining and updating of the
EST clusters is handled by a single processor, which acts as a master proces-
sor directing the remaining processors to both generate batches of promising
pairs and perform pairwise alignment on selected promising pairs. It is not
mandatory to perform pairwise alignment of each generated pair because
the current set of EST clusters may obviate the need to do so. Hence, the
master processor is also responsible for the selection of pairs to be aligned
and is a necessary intermediary between pair generation and alignment. In
order to reduce communication overhead, the master processor dispatches
the selected pairs in batches of size batchsize, a configurable parameter. To
provide an added degree of flexibility in balancing the load, we do not require
that a pair generated on a processor be allocated to the same processor if a
pairwise alignment is needed.

Once the GST has been constructed, it can be used to generate promis-
ing pairs. The algorithm used for on-demand pair generation is a variant of
the suffix tree algorithm for computing all maximal repeats of a sequence. A
pair of EST sequences should be reported if they share a maximal common
substring of length greater than or equal to a threshold value. Because a pair
of sequences can have more than one such maximal common substring, our
algorithm might generate the pair more than once. The number of such du-
plicates per pair generated by the algorithm is at most the number of distinct
maximal common substrings of the pair. The key here is that we report the
presence of a maximal common substring for a pair directly from the suffix
tree, without having to look at all the smaller length non-maximal common
substrings contained within it. This results in a significant reduction in the
run-time as opposed to the methods deployed in generating promising pairs
by existing software.

Once, PaCE is run, we get a set of clusters and a list of FASTA headers
in each cluster. For each cluster formed by PaCE, we extract the FASTA
sequences and form a seperate FASTA file. Each of these clusters would be
fed to CAP3 for assembly. Table 1 gives the summary of clusters predicted

by PaCE for various sizes of human ESTs, ranging from 10000 to 2 million
ESTs.

Table 1: Clusters by PaCE
Case No. of Sequences in input No. of clusters by PaCE

1 10000 974

2 20000 2412

3 150000 12544

4 2000000 17465
5.3 CAP3

CAP3 [7] is the assembly program that follows PaCE in the pipeline. The
assembly algorithm consists of three major phases. In the first phase, 5’ and
3’ poor regions of each read are identified and removed. Overlaps between
reads are computed. False overlaps are identified and removed. In the second
phase, reads are joined to form contigs in decreasing order of overlap scores.
Then, forwardreverse constraints are used to make corrections to contigs. In
the third phase, a multiple sequence alignment of reads is constructed and
a consensus sequence along with a quality value for each base is computed
for each contig. Base quality values are used in computation of overlaps and
construction of multiple sequence alignments.

CAP3 is a the most memory intensive application in the pipeline and it’s
complexity increases exponentially with number of sequences in the input.
As ESTs are extracted randomly from the cDNA library, CAP3 cannot be
trivially parallelized. However, with PaCE, the clusters can be assembled in
parallel. But, the number of clusters formed by PaCE increses with the size
of input. From Table 1, we can see that the number of clusters formed for 2
million human ESTs is 17465. Hence, the total number of jobs for CAP3 is
a bottle neck and has to be minimized.

As we can see from figure 1, majority of the clusters have less than 10
sequences in them. The run time for CAP3 on these sequences will be less
than a minute, but these small jobs may spend even a few hours on the queue
even before they start executing. So, we tried sorting the clusters based on
number of sequences they carried, and run the smaller clusters , which is
decided based on a set threshold, on the local machine and bigger clusters
on the teragrid.

As the number of CAP3 jobs increases, the waiting time in the queue
increases. This is because of the combined wait times in the job scheduler of

6

PaCE Cluster Distribution
for 150K ESTs

10000
L
.
.
1000 R
: %
: *
H o
2 100 ’0‘
o %
o
é
10 e
. o“l
VAN
(Y AATPET
I : S ENIDEIENENN S0 8¢ ‘
I 10 100 1000 10000

No. Of Sequences in Cluster

Figure 1: Size distribution of clusters formed by PaCE for 150000 sequences.

= Grid Jobs
Local Jobs

R

No. of Jobs submltted to SWARM

[] mE

20000 No. of sequences 150000

-]

Figure 2: Distribution of CAP3 jobs to the local and grid machines.

+ Seriesl

Swarm and in the globus resource. To minimize the waiting time, we group
the clusters into chunks and then run CAP3 on those chunks on the local and
grid machines based on number of sequences in each chunk. This way, we do
not break any cluster but reduce the number of CAP jobs considerably.

5.4 BLAST

BLAST [3] is the final program in the pipeline. We use blastz against
uniref100 database to predict the gene functions from the contigs predicted
by cap3.

BLAST works through use of a heuristic algorithm. Using a heuris-
tic method, BLAST finds homologous sequences, not by comparing either
sequence in its entirety, but rather by locating short matches between the
two sequences. This process of finding initial words is called seeding. It is
after this first match that BLAST begins to make local alignments. While
attempting to find homology in sequences, sets of common letters, known as
words, are very important. For example, lets say that the sequence contains
the following stretch of letters, GLKFA. If a BLASTp was being conducted
under default conditions, the word size would be 3 letters. In this case, using
the given stretch of letters, the searched words would be GLK, LKF, KFA.
The heuristic algorithm of BLAST locates all common three-letter words
between the sequence of interest and the hit sequence, or sequences, from
the database. These results will then be used to build an alignment. Af-
ter making words for the sequence of interest, neighborhood words are also
assembled. These words must satisfy a requirement of having a score of at
least the threshold, T, when compared by using a scoring matrix. Along
the lines of terms stated above, if a BLASTp were being conducted, the
scoring matrix that would be used would most likely be BLOSUMG62. Once
both words and neighborhood words are assembled and compiled, they are
compared to the sequences in the database in order to find matches. The
threshold score, T, determines whether a particular word will be included
in the alignment or not. Once seeding has been conducted, the alignment,
which is only 3 residues long, is extended in both directions by the algorithm
used by BLAST. Each extension impacts the score of the alignment by either
increasing or decreasing it. Should this score be higher than a pre-determined
T, the alignment will be included in the results given by BLAST. However,
should this score be lower than this pre-determined T, the alignment will
cease to extend, preventing areas of poor alignment to be included in the
BLAST results. Note, that increasing the T score limits the amount of space
available to search, decreasing the number of neighborhood words, while at

the same time speeding up the process of BLAST.

As BLAST is a database comparison done sequence by sequence, it can
also be trivially paralellized. That is, we can break the input file into smaller
chunks and run the smaller chunks in paralell on the four super computers
we use.

6 Results

The Grid based EST sequence assembly pipeline was used to assemble 2
million human ESTs and the results are summarized below.

For an input of 2 million human ESTs PaCE took 1 hour and 22 minutes
including waiting time in the queue. PaCE produced 75460 clusters and after
grouping the clussters, the number of jobs for CAP3 was only 4073. CAP3
was run in 25 hours and 44 minutes which includes the waiting time in the
queue. Thus, the total time for assembly was 27 hours and 6 minutes.

Table 2: Assembly results for 2 million human ESTs

Program No. of jobs submitted to Swarm Wait time + run time
Repeat Masker 1000 11:56 hours
PaCE 1 01:52 hours
CAP3 4073 25:44 hours
BLAST 893 49:00 hours

To validate the quality of results in our Grid based EST Assembly
pipeline, we bench mark our tool against EST Piper [10] . We took 151000
ESTs of Daphnia pulex. The ESTs were then independently assembled using
EST piper and our GRID based EST sequence assembly tool. The number
of contigs predicted by EST piper was 17465 and the number of contigs
predicted by Grid based EST sequence assembly was 20803. The contigs
were then blasted against Uniref100 database with a e-value of 2. Grid based
EST Assembly predicted, 90.8% of the genes predicted by EST piper. From
the BLAST results, I compared the number unique genes predicted when
considering only the best hit for each contig. This way Grid based EST
Sequence assembly predicted 76.4% of the genes predicted by EST piper.
The results are summarized in table 3.

While considering only the top BLAST hit for each contig, Grid based
EST sequence assembly predicted 3284 genes not predicted by EST piper,

Table 3: Grid based EST assembly vs EST piper

No. Name EST piper Grid based EST assembly
1 NO. of contigs 17465 20803
2 Average length of contigs 935 846
3 No. of hits 13216 15747
4 No. of unique top hit genes 9221 10329
5 Wait time + run time 52:00 hours 08:42 hours

2176
EST piper

Figure 3: BLAST results of Grid based EST Assembly vs EST piper for best hit.

but missed 2176 genes predicted by EST piper. The results are summarized
in the venn diagram.

References

1]

Gocayne JD Dubnick M Polymeropoulos MH Xiao H Merril CR Wu
A Olde B Moreno RF et al. Adams MD, Kelley JM. Complementary
dna sequencing: expressed sequence tags and human genome project.
Science, 252(5013):1651-1656, 1991.

P Green AFA Smit, R Hubley. Repeat masker. 1996.

Miller W Myers EW Lipman DJ. Altschul SF, Gish W. Basic local
alignment search tool. JOURNAL OF MOLECULAR BIOLOGY, No
215::403-410, 1990.

Suresh Kothari Anantharaman Kalyanaraman, Srinivas Aluru and
Volker Brendel. Efficient clustering of large est data sets on parallel
computers. Nucleic Acids research, No 11, 2003.

10

[5]

[9]

[10]

Zhu W: Brendel V, Xing L. Gene structure prediction from consensus
spliced alignment of multiple ests matching the same genomic locus.
Bioinformatics, 20(7):1157-1169, 2004.

C. et al. Catlett. Teragrid: Analysis of organization, system architecture,
and middleware enabling new types of applications. HPC and Grids in
Action, 2007.

Xiaogiu Huang and Anup Madan3. Cap3: A dna sequence assembly
program. Genome research, No 9::868-877, 1999.

M.Pierce Pallickara, SL. Swarm: Scheduling large-scale jobs over the
loosely-coupled hpc clusters. IEEE Fourth International Conference on
eScience, pages 285-292, 12/2008 2008. December 7-12.

Andreas Rohwer Paul M. Selzer, Richard J. Marhfer. A Applied bioin-

formatics: an introduction. Springer, 2008.

Chris Hemmerich Ankita Sarangi John K Colbourne Zuojian Tang,
Jeong-Hyeon Choi and Qunfeng Dong. Estpiper a web-based analy-
sis pipeline for expressed sequence tags. BMC' Genomics, 10: 174, 20009.

11

