Service-Oriented Architecture for a Scalable Videoconferencing System

Ahmet Uyar'?, Wenjun Wu?, Hasan Bulut®, Geoffrey Fox’
"Department of Electrical Eng. & Computer Sci. Syracuse Unv.
?Community Grids Lab, Indiana University
{auyar, wewu, hbulut, gcf}@indiana.edu

Abstract

The availability of increasing network bandwidth and
computing power provides new opportunities for
videoconferencing systems over Internet. Multimedia
capable devices with broadband Internet connections are
spreading rapidly. Even cell phones will have broadband
internet access in the near future. This requires universally
accessible and scalable videoconferencing systems that
can deliver thousands of concurrent audio and video
streams. However, developing videoconferencing systems
over Internet is a challenging task, since audio and video
communications require high bandwidth and low latency.
In addition, the processing of audio and video streams is
computing intensive. Therefore, it is particularly difficult
to develop scalable systems that support high number of
users with various capabilities. Current videoconferencing
systems such as IP-Multicast and H.323 can not fully
address the problem of scalability and universal
accessibility. These systems lack flexible service oriented
architecture to support increasingly diverse. We believe
that with the advancements in computing power and
network bandwidth, more flexible and service oriented
systems should be developed. In this paper, we outline a
service oriented architecture for videoconferencing,
GlobalMMCS, based on a publish/subscribe event
brokering network, NaradaBrokering.

Keywords: service oriented computing, videoconferencing,
publish/subscribe systems.

1 Introduction

The availability of increasing network bandwidth and
computing power provides new opportunities for
videoconferencing and collaborations systems over
Internet. On one hand, broadband internet connections are
spreading rapidly. Even cell phones will have broadband
internet access in the near future. On the other hand, there
are excellent quality audio and video add-ons (video
cameras and microphones) for desktops and PDAs.
Therefore, we can imagine that the trend in the increasing
usage of videoconferencing systems will continue. This
requires universally accessible and scalable
videoconferencing systems that can deliver thousands or
tens of thousands of concurrent audio and video streams.

In addition to audio and video delivery, such systems
should provide scalable media processing services such as
transcoding, audio mixing, video merging, etc. to support
increasingly diverse set of clients.

However, developing videoconferencing systems
over Internet is a challenging task, since audio and video
communications require high bandwidth and low latency.
In addition, the processing of audio and video streams is
computing intensive. Therefore, it is particularly difficult
to develop scalable systems that support high number of
users with diverse capabilities. Current videoconferencing
systems such as IP-Multicast [1] and H.323 [2] can not
fully address the problem of scalability and universal
accessibility. These systems designed to deliver the best
performance and lack flexible service oriented architecture
to support increasingly diverse clients with various
network and device capabilities. We believe that with the
advancements in computing power and network
bandwidth, more flexible and service oriented systems
should be developed.

The first step when building a videoconferencing
system is to analyze and identify the tasks performed in
videoconferencing sessions. Then, independently scalable
components can be designed for each task. It is also
important to coordinate the interactions among these
components in an efficient and flexible manner to add new
services and computing power when necessary. We
identified that there are three main tasks performed in
videoconferencing sessions: audio/video distribution,
media processing and meeting management. We proposed
using a publish/subscribe event brokering system as the
audio and video distribution middleware in [3] and
presented extensive performance test results at [4, 5]. In
this paper, we outline a service oriented architecture to
build a scalable and universally accessible
videoconferencing system, GlobalMMCS [6], based on a

publish/subscribe event brokering network,
NaradaBrokering [7].
2 GlobalMMCS Architecture

Global Multimedia Collaboration System
(GlobalMMCS) is designed to provide scalable

videoconferencing services to a diverse set of users. The
architecture is flexible enough to support users with

various network bandwidth requirements and endpoint
capabilities. It supports users behind firewalls, NATSs, and
proxies.

There are three main components of this architecture
(Figure 1): media and content distribution network, media
processing unit and meeting management unit. The media
processing unit is separated from media distribution
completely to provide flexibility and scalability.

NaradaBrokering [7] event broker network is used to
deliver both media and data packages. It provides a unified
middleware for all communications. This reduces overall
system complexity significantly.

Media Processing Unit provides services at server
side to support diverse set of clients. Some clients can not

Meeting Management Unit . .
\ NaradaBrokering Media and

Content Distribution Network

Meeting ‘
“i_ Schedulers

There are many types of service providers in this
system. MediaServers provide media processing services
such as audio mixing, video mixing and image grabbing.
MeetingManagers provide meeting management services
such as starting and stopping audio and video sessions.
AudioSession and VideoSession components provide
services to participants for joining and leaving meetings.
Therefore, we provide a unified framework to manage the
interactions among system components and distribute
service providers. We avoid centralized solutions to
provide fault tolerance and location independence.
Addition and removal of service providers are handled
dynamically to allow the system to grow or shrink.

3 Messaging Among System Components

We use NaradaBrokering-JMS publish/subscribe
system to distribute the control messages exchanged
among the components in the system. This simplifies

Broker N

receive multiple audio and video streams or they can not
process and display them. Therefore, server side
components generate combined streams for them.
Currently, we implemented audio mixing, video mixing
and image grabbing services.

Meeting management unit handles
starting/stopping/modifying videoconferencing sessions. It
manages the media processing unit resources and handles
participant joins and leaves. AudioSession component
manages the audio part of a session and VideoSession
component manages the video part. MeetingSchedulers are
used to start and end AudioSession and VideoSession
instances.

Media Processing Unit

MediaServers

/~ Audio Mixer ™
Servers

Broker 2

/~ Video Mixer

(|

Servers

/Image Grabber ™,
Servers

user

Figure 1. GlobalMMCS Architecture

building a scalable solution, since messages can be
delivered to multiple destinations without explicit
knowledge of the publisher. However, JMS [8] provides a
group communication medium. It uses topics as the group
addresses. In our system, while some messages are sent to
a group of destinations, some others are destined to only
one target. Therefore, an efficient group formation and
message exchange mechanism should be designed.
Messages should only be delivered to intended
destinations. First, we examine various messaging types
that take place in this system.

3.1 Messaging Semantics

A. Request/Response messaging: This messaging
semantic is used when a consumer requests a service from
a service provider. It sends a request message to the
service provider to execute a service. The service provider
processes the received message and sends a response

message back to the sender. Both the request and response
messages are destined to one entity. Therefore, all service
providers and consumers should have unique topics to
receive messages destined to them only.

B. Group messaging: This messaging semantic is
used when an entity wants to send a message to a group of
entities in the system. It publishes a message to a shared
topic and all group members receive it. In some cases,
receiving components send a response message back to the
sender. In some other cases, no response message is
assumed. There are two types of applications of this
messaging semantic. The first one is to discover service
providers and the second one is to execute a service on a
group of service providers.

C. Event based messaging: Event based
messaging is used when an entity wants to receive
messages from another entity regarding the events
happening on that component during a period of time. All
interested entities subscribe to the event topic and receive
messages as the publisher posts them. A typical application
of this event based messaging in our system is to deliver
events related to audio and video streams. All interested
participants subscribe to the event topic and monitoring
service publishes the events as they happen.

3.2 Topic Naming Conventions

To meet the requirements of the messaging semantics
explained above, two types of topics are needed; group
topics and unique component topics. We use a string based
directory style topic naming convention to create topic
names in an orderly and easy to understand fashion. All
topic names start with a common root. We use our project
name as the root name, GlobalMMCS. However, it is
possible to change this root name and all topic names
change accordingly. This allows installing more than one
copy of the system on the same broker network. Groups
are formed by the multiple instances of the same
components. For example, all instances of MediaServers
running in the system belong to the same group. Group
topic names are constructed by adding the component
name to the root by separating with a forward slash:

e GlobalMMCS/MeetingManager
e GlobaIMMCS/AudioSession
e GlobaIMMCS/MediaServer

Unique component topic names are constructed by
adding a unique id to these component group addresses.
When an instance of a component is initiated, it gets an id
from the broker that is connected:

e GlobaMMCS/AudioSession/<sessionlD>
e GlobalMMCS/MediaServer/<serverID>

We implemented a unique id generation mechanism at
the broker network to provide unique ids on time and
space [9]. An id generator runs in every broker and it can
generate an id for every millisecond for 8 bytes long.

Sometimes a component needs to communicate with
many different components; in that case, we use extra one
more layer to distinguish these communication channels:

e GlobaMMCS/AudioSession/<id>/RtpLinkManager
e GlobalMMCS/AudioSession/<id>/AudioMixerServer
o GlobaMMCS/AudioSession/<id>/RtpEventMonitor

In the above example, an AudioSession communicates
with three different components: RepLinkManager,
AudioMixerServer and RtpEventMonitor. Using different
topics simplifies logging and detecting the problems. It
also simplifies developing codes to handle message
exchanges with multiple components.

With this naming convention, we provide a unified
mechanism to generate group and individual component
topic names. It is easy to understand and debug.

4 Service Distribution Framework

We provide a unified framework (Figure 2) to
distribute many types of service providers. This
framework supports running multiple copies of the same
service providers in a distributed fashion. We assume that
distributed copies should be able to run both in a local
network and in geographically distant locations.

A. Addressing: Each service provider and
consumer is identified by a unique topic name. This
unique topic name is used to communicate with each entity
privately. This topic name is generated as explained in the
previous section. In addition, each service provider listens
on the service provider group topic to receive messages
destined to all group members.

B. Service Discovery: Instead of using a
centralized service registry for announcing and
discovering services, we use a distributed dynamic
mechanism. One problem with centralized registry is the
failure susceptibility. Another difficulty is the fact that the
status of the service providers change dynamically in our
system. Therefore, it is not practical to update a centralized
registry frequently.

First, a consumer sends an Inquiry message to the
service provider group address. In this message, it includes
its own private topic name, so that service providers can
send the response messages back to it only. When service
providers receive this message, they respond by sending a
ServiceDescription message, in which they include their
current status information and their private topic name.
The status information depends on the nature of the service
being provided. However, it must be helpful for the
consumer to select the best service provider to ask for the

service. The consumer waits for a period of time for
responses to arrive, and evaluates the received messages.
Since consumers do not know the current number of
service providers in the system, after waiting for a while
they assume that they received responses from all service
providers.

Service
Provider 1

Consumer 1

Service
Provider 2

Service
Provider 3

Consumer 2

Consumer 3 Broker Network

Service
Provider N

Figure 2. Service distribution model

Consumer M

C. Service Selection: When a consumer receives
ServiceDescription messages from service providers, it
compares the service providers according to the service
selection criteria set by user. This criteria can be as simple
as checking the CPU loads on host machines and choosing
the least loaded one or it can take into account more
information and complicated logic. For example, users can
be given an option to set the preferences over the
geographical location of the service providers. This can be
particularly useful for systems that are deployed
worldwide.

D. Service Execution: When the consumer selects
a service provider to run its service, it sends a Request
message to the private topic of that service provider for the
execution of the service. If the service provider can handle
this request, it sends an Ok message as the response.
Otherwise, it sends a Fail message. In the case of failure,
the consumer either starts this process from the beginning
or tries the second best option. A service can be terminated
by the consumer by sending a Stop message.

A service is usually provided for a period of time,
such as during a meeting. Therefore, the consumer and the
service provider should be aware of each others continues
existence during this time. Each of them sends periodic
KeepAlive messages to the other. If either of them fails to
receive a number of KeepAlive messages, it assumes that
the other party is dead. If the consumer is assumed dead,
then the service provider deletes that service. If the service
provider is assumed dead, then consumer looks for another
alternative.

Each service provider is totally independent of
other service providers. Namely, service providers do not

share any resources. Therefore, there is no need to
coordinate the service providers among themselves.

4.1 Advantages of this Framework

Fault tolerance: There is no single point of failure
in the system. Even though some components may fail,
others continue to provide services.

Scalability: This model provides a scalable
solution. More service providers can be added easily to
support more users.

Location independence: Service providers and
consumers are totally independent of others in the system.
A component is only connected to one broker and it
exchanges all its data and media messages through this
broker. Therefore, it can run anywhere as long as it is
connected to a broker.

5 Conclusion

We presented service oriented architecture to build a
scalable videoconferencing system. This system utilizes
publish/subscribe messaging middleware to transfer both
media and data traffic. It implements a service oriented

framework to manage message exchanges among
distributed components efficiently. It allows new
computing resources to be added and removed

dynamically. It also provides location independence to all
system components.

6 References

[17 K. Almeroth, “The Evolution of Multicast: From the MBone
to Inter-Domain Multicast to Internet2 Deployment”, IEEE
Network, Jan 2000, Volume 14.

[2] ITU-T Recommendation H.323, “Packet based multimedia
communication systems”, Geneva, Switzerland, Feb. 1998.

[31 A. Uyar, S. Pallickara, G. Fox, “Towards an Architecture
for Audio/Video Conferencing in Distributed Brokering
Systems”, The proceedings of The IC on Communications
in Computing, June 2003, Las Vegas, Nevada, USA.

[4] A. Uyar, G. Fox. Investigating the Performance of
Audio/Video Service Architecture II: Single Broker. The
International Symposium on Collaborative Technologies
and Systems. May 2005, Missouri, USA.

[S1 A. Uyar, G. Fox. Investigating the Performance of
Audio/Video Service Architecture II: Broker Network. The
International Symposium on Collaborative Technologies
and Systems. May 2005, Missouri, USA.

[6] GlobalMMCS Project. http://www.globalmmecs.org.

[7] NaradaBrokering project. http://www.naradabrokering.org.

[8] Mark Happner, Rich Burridge and Rahul Sharma. Sun
Microsystems. Java Message Service Specification. 2000.

[9] Ahmet Uyar. Scalable Service Oriented Architecture for
Audio/Video Conferencing. Ph.D. Thesis. Syracuse
University. May 2005.

